Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors

被引:242
作者
Jayaramulu, Kolleboyina [1 ,2 ,3 ,4 ]
Horn, Michael [5 ]
Schneemann, Andreas [6 ]
Saini, Haneesh [1 ]
Bakandritsos, Aristides [2 ,7 ]
Ranc, Vaclav [2 ]
Petr, Martin [2 ]
Stavila, Vitalie [8 ]
Narayana, Chandrabhas [9 ]
Scheibe, Blazej [2 ,10 ]
Kment, Stepan [2 ,7 ]
Otyepka, Michal [2 ]
Motta, Nunzio [5 ]
Dubal, Deepak [5 ]
Zboril, Radek [2 ,7 ]
Fischer, Roland A. [3 ,4 ]
机构
[1] Indian Inst Technol Jammu, Dept Chem, Nagrota 181221, Jammu & Kashmir, India
[2] Palacky Univ, Reg Ctr Adv Technol & Mat, Fac Sci, Slechtitelu 27, Olomouc 78371, Czech Republic
[3] Tech Univ Munich, Dept Chem, Chair Inorgan & Met Organ Chem, D-85748 Garching, Germany
[4] Tech Univ Munich, Catalysis Res Ctr, D-85748 Garching, Germany
[5] Queensland Univ Technol QUT, Sch Chem & Phys, 2 George St, Brisbane, Qld 4001, Australia
[6] Tech Univ Dresden, Dept Chem & Food Chem, Bergstr 66, D-01069 Dresden, Germany
[7] VSB Tech Univ Ostrava, Nanotechnol Ctr, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[8] Sandia Natl Labs, 7011 East Ave,MS9161, Livermore, CA 94550 USA
[9] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[10] Adam Mickiewicz Univ, NanoBioMed Ctr, Wszechnicy Piastowskiej 3, PL-61614 Poznan, Poland
基金
澳大利亚研究理事会; 欧盟地平线“2020”;
关键词
2D materials; asymmetric supercapacitors; covalent assemblies; metal-organic frameworks; MXenes;
D O I
10.1002/adma.202004560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6O4(OH)(4)(bdc-NH2)(6); bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g(-1), significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a p-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3C2TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg(-1) and an energy density of up to 73 Wh kg(-1), which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Polyaniline-Grafted Graphene Hybrid with Amide Groups and Its Use in Supercapacitors [J].
An, Junwei ;
Liu, Jianhua ;
Zhou, Yecheng ;
Zhao, Haifeng ;
Ma, Yuxiao ;
Li, Mengliu ;
Yu, Mei ;
Li, Songmei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (37) :19699-19708
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Covalently functionalized graphene as a supercapacitor electrode material [J].
Bakandritsos, Aristides ;
Jakubec, Petr ;
Pykal, Martin ;
Otyepka, Michal .
FLATCHEM, 2019, 13 :25-33
[4]   Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene [J].
Bakandritsos, Aristides ;
Kadam, Ravishankar G. ;
Kumar, Pawan ;
Zoppellaro, Giorgio ;
Medved', Miroslav ;
Tucek, Jiri ;
Montini, Tiziano ;
Tomanec, Ondrej ;
Andryskova, Pavlina ;
Drahos, Bohuslav ;
Varma, Rajender S. ;
Otyepka, Michal ;
Gawande, Manoj B. ;
Fornasiero, Paolo ;
Zboril, Radek .
ADVANCED MATERIALS, 2019, 31 (17)
[5]   Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene [J].
Bakandritsos, Aristides ;
Pykal, Martin ;
Blonski, Piotr ;
Jakubec, Petr ;
Chronopoulos, Demetrios D. ;
Polakova, Katerina ;
Georgakilas, Vasilios ;
Cepe, Klara ;
Tomanec, Ondrej ;
Ranc, Vaclav ;
Bourlinos, Athanasios B. ;
Zboril, Radek ;
Otyepka, Michal .
ACS NANO, 2017, 11 (03) :2982-2991
[6]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[7]   Chemical functionalization and characterization of graphene-based materials [J].
Bottari, Giovanni ;
Angeles Herranz, Ma ;
Wibmer, Leonie ;
Volland, Michel ;
Rodriguez-Perez, Laura ;
Guldi, Dirk M. ;
Hirsch, Andreas ;
Martin, Nazario ;
D'Souza, Francis ;
Torres, Tomas .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (15) :4464-4500
[8]   Immobilizing CdS nanoparticles and MoS2/RGO on Zr-based metal-organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H2 evolution [J].
Bu, Yuhong ;
Li, Fengyan ;
Zhang, Yuzhuo ;
Liu, Ran ;
Luo, Xinze ;
Xu, Lin .
RSC ADVANCES, 2016, 6 (46) :40560-40566
[9]   R&D considerations for the performance and application of electrochemical capacitors [J].
Burke, Andrew .
ELECTROCHIMICA ACTA, 2007, 53 (03) :1083-1091
[10]   Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications [J].
Burtch, Nicholas C. ;
Heinen, Jurn ;
Bennett, Thomas D. ;
Dubbeldam, David ;
Allendorf, Mark D. .
ADVANCED MATERIALS, 2018, 30 (37)