RAPIDLY SINGLE-TEMPORAL REMOTE SENSING IMAGE CLOUD REMOVAL BASED ON LAND COVER DATA

被引:2
作者
Wang, Yuxi [1 ,2 ,4 ]
Zhang, Wenjuan [3 ]
Chen, Shanjing [1 ,2 ,5 ]
Li, Zhen [3 ]
Zhang, Bing [3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Army Logist Univ, Chongqing 401311, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Cloud removal; image processing; image restoration;
D O I
10.1109/IGARSS46834.2022.9883184
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Cloud cover is a common problem in optical satellite imagery, which leads to missing information in images. To rapidly acquire non-cloud images, we design a cloud removal method to recover single-temporal remote sensing image based on land cover data which is easier to obtain than multitemporal data. Considering that the same features have the same radiation characteristics, we extract the similar pixels from same category around the missing pixels and calculate the value of missing pixels according to the distance weights of these pixels. The performance of the proposed method was evaluated on MODIS images and Landsat images and the results also prove that universal applicability of this algorithm in different resolutions and surface contents.
引用
收藏
页码:3307 / 3310
页数:4
相关论文
共 11 条
[1]   Spatially and Temporally Weighted Regression: A Novel Method to Produce Continuous Cloud-Free Landsat Imagery [J].
Chen, Bin ;
Huang, Bo ;
Chen, Lifan ;
Xu, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (01) :27-37
[2]   Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J].
Gong, Peng ;
Liu, Han ;
Zhang, Meinan ;
Li, Congcong ;
Wang, Jie ;
Huang, Huabing ;
Clinton, Nicholas ;
Ji, Luyan ;
Li, Wenyu ;
Bai, Yuqi ;
Chen, Bin ;
Xu, Bing ;
Zhu, Zhiliang ;
Yuan, Cui ;
Suen, Hoi Ping ;
Guo, Jing ;
Xu, Nan ;
Li, Weijia ;
Zhao, Yuanyuan ;
Yang, Jun ;
Yu, Chaoqing ;
Wang, Xi ;
Fu, Haohuan ;
Yu, Le ;
Dronova, Iryna ;
Hui, Fengming ;
Cheng, Xiao ;
Shi, Xueli ;
Xiao, Fengjin ;
Liu, Qiufeng ;
Song, Lianchun .
SCIENCE BULLETIN, 2019, 64 (06) :370-373
[3]  
Jassim F. A., 2013, WORLD COMPUT SCI INF, V3, P91
[4]   Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion [J].
Meraner, Andrea ;
Ebel, Patrick ;
Zhu, Xiao Xiang ;
Schmitt, Michael .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 (166) :333-346
[5]  
ROSSOW WB, 1993, J CLIMATE, V6, P2394, DOI 10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO
[6]  
2
[7]   A CNN-Based Fusion Method for Feature Extraction from Sentinel Data [J].
Scarpa, Giuseppe ;
Gargiulo, Massimiliano ;
Mazza, Antonio ;
Gaetano, Raffaele .
REMOTE SENSING, 2018, 10 (02)
[8]   Missing Information Reconstruction of Remote Sensing Data: A Technical Review [J].
Shen, Huanfeng ;
Li, Xinghua ;
Cheng, Qing ;
Zeng, Chao ;
Yang, Gang ;
Li, Huifang ;
Zhang, Liangpei .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2015, 3 (03) :61-85
[9]   Reconstruction of Cloud-free Sentinel-2 Image Time-series Using an Extended Spatiotemporal Image Fusion Approach [J].
Zhou, Fuqun ;
Zhong, Detang ;
Peiman, Rihana .
REMOTE SENSING, 2020, 12 (16)
[10]   A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images [J].
Zhu, Xiaolin ;
Gao, Feng ;
Liu, Desheng ;
Chen, Jin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) :521-525