Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte

被引:109
作者
Berbano, Seth S. [1 ,2 ,4 ]
Guo, Jing [1 ,2 ]
Guo, Hanzheng [1 ,2 ]
Lanagan, Michael T. [1 ,2 ,3 ,4 ]
Randall, Clive A. [1 ,2 ,4 ]
机构
[1] Penn State Univ, Ctr Dielect & Piezoelect, Mat Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Engn Sci & Mech, Millennium Sci Complex, 227 Hammond Bldg, University Pk, PA 16802 USA
[4] Amer Canc Soc, Atlanta, GA 30329 USA
基金
美国国家科学基金会;
关键词
Composites; conductivity; electroceramics; impedance spectroscopy; CONDUCTING GLASS-CERAMICS; IONIC-CONDUCTIVITY; LITHIUM; MICROSTRUCTURE; TRANSPORT; CRYSTALLIZATION; PERFORMANCE;
D O I
10.1111/jace.14727
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The recently developed technique of cold sintering process (CSP) enables densification of ceramics at low temperatures, i.e., <300 degrees C. CSP employs a transient aqueous solvent to enable liquid phase-assisted densification through mediating the dissolution-precipitation process under a uniaxial applied pressure. Using CSP in this study, 80% dense Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) electrolytes were obtained at 120 degrees C in 20minutes. After a 5minute belt furnace treatment at 650 degrees C, 50 degrees C above the crystallization onset, Li-ion conductivity was 5.4x10(-5)S/cm at 25 degrees C. Another route to high ionic conductivities similar to 10(-4)S/cm at 25 degrees C is through a composite LAGP - (PVDF-HFP) co-sintered system that was soaked in a liquid electrolyte. After soaking 95, 90, 80, 70, and 60vol% LAGP in 1M LiPF6 EC-DMC (50:50vol%) at 25 degrees C, Li-ion conductivities were 1.0x10(-4)S/cm at 25 degrees C with 5 to 10wt% liquid electrolyte. This paper focuses on the microstructural development and impedance contributions within solid electrolytes processed by (i) Crystallization of bulk glasses, (ii) CSP of ceramics, and (iii) CSP of ceramic-polymer composites. CSP may offer a new route to enable multilayer battery technology by avoiding the detrimental effects of high temperature heat treatments.
引用
收藏
页码:2123 / 2135
页数:13
相关论文
共 50 条
[41]   Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics [J].
Jadhav, Harsharaj S. ;
Cho, Min-Seung ;
Kalubarme, Ramchandra S. ;
Lee, Jong-Sook ;
Jung, Kyu-Nam ;
Shin, Kyoung-Hee ;
Park, Chan-Jin .
JOURNAL OF POWER SOURCES, 2013, 241 :502-508
[42]   Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification [J].
Li, Lianchuan ;
Zhang, Ziqi ;
Luo, Linshan ;
You, Run ;
Jiao, Jinlong ;
Huang, Wei ;
Wang, Jianyuan ;
Li, Cheng ;
Han, Xiang ;
Chen, Songyan .
IONICS, 2020, 26 (08) :3815-3821
[43]   A rechargeable all-solid-state Li-CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst [J].
Du, Yuemin ;
Liu, Yijie ;
Yang, Sixie ;
Li, Chao ;
Cheng, Zhu ;
Qiu, Feilong ;
He, Ping ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (15) :9581-9585
[44]   Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte [J].
Paolella, Andrea ;
Zhu, Wen ;
Bertoni, Giovanni ;
Perea, Alexis ;
Demers, Hendrix ;
Savoie, Sylvio ;
Girard, Gabriel ;
Delaporte, Nicolas ;
Guerfi, Abdelbast ;
Rumpel, Mathias ;
Lorrmann, Henning ;
Demopoulos, George P. ;
Zaghib, Karim .
ADVANCED MATERIALS INTERFACES, 2020, 7 (12)
[45]   Microstructure and ionic conductivity of Li1.5Al0 .5Ge1.5(PO4)3 solid electrolyte prepared by spark plasma sintering [J].
Tong, Huan ;
Liu, Jingru ;
Liu, Jian ;
Liu, Yulong ;
Wang, Dawei ;
Sun, Xueliang ;
Song, Xiping .
CERAMICS INTERNATIONAL, 2020, 46 (06) :7634-7641
[46]   A solid-liquid composite electrolyte with a vertical microporous Li1.5Al0.5Ge1.5(PO4)3 skeleton that prepared by femtosecond laser structuring and filled with ionic liquid [J].
Yan, Binggong ;
Qu, Yang ;
Ren, Hongliang ;
Lu, Xizhao ;
Wang, Zhen ;
Liu, Weihang ;
Wang, Yumei ;
Kotobuki, Masashi ;
Jiang, Kaiyong .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 287
[47]   Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method [J].
Kotobuki, Masashi ;
Koishi, Masaki ;
Kato, Yoshiki .
IONICS, 2013, 19 (12) :1945-1948
[48]   A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries [J].
Nikodimos, Yosef ;
Abrha, Ljalem Hadush ;
Weldeyohannes, Haile Hisho ;
Shitaw, Kassie Nigus ;
Temesgen, Nigusu Tiruneh ;
Olbasa, Bizualem Wakuma ;
Huang, Chen-Jui ;
Jiang, Shi-Kai ;
Wang, Chia-Hsin ;
Sheu, Hwo-Shuenn ;
Wu, She-Huang ;
Su, Wei-Nien ;
Yang, Chun-Chen ;
Hwang, Bing Joe .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) :26055-26065
[49]   Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries [J].
Yang, Shujiao ;
Zhang, Zhihua ;
Shen, Lin ;
Chen, Peng ;
Gu, Zhi ;
Chang, Mingyuan ;
Zhao, Yue ;
He, Hao ;
Yao, Xiayin .
JOURNAL OF POWER SOURCES, 2022, 518
[50]   High-temperature X-ray analysis of phase evolution in lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3 [J].
He Kun ;
Wang Yanhang ;
Zu Chengkui ;
Liu Yonghua ;
Zhao Huifeng ;
Chen Jiang ;
Han Bin ;
Ma Juanrong .
MATERIALS CHARACTERIZATION, 2013, 80 :86-91