Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte

被引:109
作者
Berbano, Seth S. [1 ,2 ,4 ]
Guo, Jing [1 ,2 ]
Guo, Hanzheng [1 ,2 ]
Lanagan, Michael T. [1 ,2 ,3 ,4 ]
Randall, Clive A. [1 ,2 ,4 ]
机构
[1] Penn State Univ, Ctr Dielect & Piezoelect, Mat Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Engn Sci & Mech, Millennium Sci Complex, 227 Hammond Bldg, University Pk, PA 16802 USA
[4] Amer Canc Soc, Atlanta, GA 30329 USA
基金
美国国家科学基金会;
关键词
Composites; conductivity; electroceramics; impedance spectroscopy; CONDUCTING GLASS-CERAMICS; IONIC-CONDUCTIVITY; LITHIUM; MICROSTRUCTURE; TRANSPORT; CRYSTALLIZATION; PERFORMANCE;
D O I
10.1111/jace.14727
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The recently developed technique of cold sintering process (CSP) enables densification of ceramics at low temperatures, i.e., <300 degrees C. CSP employs a transient aqueous solvent to enable liquid phase-assisted densification through mediating the dissolution-precipitation process under a uniaxial applied pressure. Using CSP in this study, 80% dense Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) electrolytes were obtained at 120 degrees C in 20minutes. After a 5minute belt furnace treatment at 650 degrees C, 50 degrees C above the crystallization onset, Li-ion conductivity was 5.4x10(-5)S/cm at 25 degrees C. Another route to high ionic conductivities similar to 10(-4)S/cm at 25 degrees C is through a composite LAGP - (PVDF-HFP) co-sintered system that was soaked in a liquid electrolyte. After soaking 95, 90, 80, 70, and 60vol% LAGP in 1M LiPF6 EC-DMC (50:50vol%) at 25 degrees C, Li-ion conductivities were 1.0x10(-4)S/cm at 25 degrees C with 5 to 10wt% liquid electrolyte. This paper focuses on the microstructural development and impedance contributions within solid electrolytes processed by (i) Crystallization of bulk glasses, (ii) CSP of ceramics, and (iii) CSP of ceramic-polymer composites. CSP may offer a new route to enable multilayer battery technology by avoiding the detrimental effects of high temperature heat treatments.
引用
收藏
页码:2123 / 2135
页数:13
相关论文
共 50 条
  • [31] Improvement of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) superionic conductivity via antimony doping
    Lebedeva, Maria
    Markov, Viktor
    Kim, Artem
    Chernyavsky, Vladislav
    Olkhovskii, Denis
    Vishniakov, Pavel
    Maximov, Maxim
    [J]. IONICS, 2025, 31 (01) : 239 - 247
  • [32] Understanding the Evolution of the Structure and Electrical Properties during Crystallization of Li1.5Al0.5Ge1.5(PO4)3 and Li1.5Sc0.17Al0.33Ge1.5(PO4)3 NASICON-Type Glass Ceramics
    Dias, Jeferson A.
    Santagneli, Silvia H.
    Rodrigues, Ana C. M.
    Boas, Naiza V.
    Messaddeq, Younes
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (13) : 6207 - 6225
  • [33] Determination of Crystallization Kinetics Parameters of a Li1.5Al0.5Ge1.5(PO4)3 (LAGP) Glass by Differential Scanning Calorimetry
    Rodrigues, A. M.
    Narvaez-Semanate, J. L.
    Cabral, A. A.
    Rodrigues, A. C. M.
    [J]. MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2013, 16 (04): : 811 - 816
  • [34] Improved ion conductivity and interface characteristics of the Te-doped solid NASICON electrolyte Li1.5Al0.5Ge1.5(PO4)3 with graphite coating
    Liu, Lei
    Cui, Xuan
    Jie, Zhihui
    Lin, Yihan
    Zhang, Chen
    Song, Jinhong
    Wang, Linxia
    Ma, Jianli
    Ma, Lei
    [J]. JOURNAL OF POWER SOURCES, 2023, 575
  • [35] Sol-Gel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithium-Oxygen Batteries
    Kichambare, Padmakar D.
    Howell, Thomas
    Rodrigues, Stanley
    [J]. ENERGY TECHNOLOGY, 2014, 2 (04) : 391 - 396
  • [36] Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing
    Yan, Binggong
    Zhu, Yaqi
    Pan, Feng
    Liu, Jichang
    Lu, Li
    [J]. SOLID STATE IONICS, 2015, 278 : 65 - 68
  • [37] Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries
    Sung, Bong-Joon
    Didwal, Pravin N.
    Verma, Rakesh
    Nguyen, An-Giang
    Chang, Duck Rye
    Park, Chan-Jin
    [J]. ELECTROCHIMICA ACTA, 2021, 392
  • [38] Rapid crystallization of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics via ultra-fast high-temperature sintering (UHS)
    Wu, Jinghua
    Kermani, Milad
    Cao, Lei
    Wang, Bohan
    Dai, Zhiquan
    Fu, Le
    Hu, Chunfeng
    Grasso, Salvatore
    [J]. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2023, 20 (04) : 2125 - 2130
  • [39] Unveiling the Cation Exchange Reaction between the NASICON Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and the pyr13TFSI Ionic Liquid
    Paolella, Andrea
    Bertoni, Giovanni
    Zhu, Wen
    Campanella, Daniele
    La Monaca, Andrea
    Girard, Gabriel
    Demers, Hendrix
    Nita, Alina Cristina Gheorghe
    Feng, Zimin
    Vijh, Ashok
    Guerfi, Abdelbast
    Trudeau, Michel
    Armand, Michel
    Krachkovskiy, Sergey A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (08) : 3442 - 3448
  • [40] NASICON-structured solid-state electrolyte Li1.5Al0.5-xGaxGe1.5(PO4)3 prepared by microwave sintering
    Yan, Binggong
    Kang, Lei
    Kotobuki, Masashi
    Wang, Fei
    Huang, Xiaodi
    Song, Xuan
    Jiang, Kaiyong
    [J]. MATERIALS TECHNOLOGY, 2019, 34 (06) : 356 - 360