Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte

被引:109
|
作者
Berbano, Seth S. [1 ,2 ,4 ]
Guo, Jing [1 ,2 ]
Guo, Hanzheng [1 ,2 ]
Lanagan, Michael T. [1 ,2 ,3 ,4 ]
Randall, Clive A. [1 ,2 ,4 ]
机构
[1] Penn State Univ, Ctr Dielect & Piezoelect, Mat Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Engn Sci & Mech, Millennium Sci Complex, 227 Hammond Bldg, University Pk, PA 16802 USA
[4] Amer Canc Soc, Atlanta, GA 30329 USA
基金
美国国家科学基金会;
关键词
Composites; conductivity; electroceramics; impedance spectroscopy; CONDUCTING GLASS-CERAMICS; IONIC-CONDUCTIVITY; LITHIUM; MICROSTRUCTURE; TRANSPORT; CRYSTALLIZATION; PERFORMANCE;
D O I
10.1111/jace.14727
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The recently developed technique of cold sintering process (CSP) enables densification of ceramics at low temperatures, i.e., <300 degrees C. CSP employs a transient aqueous solvent to enable liquid phase-assisted densification through mediating the dissolution-precipitation process under a uniaxial applied pressure. Using CSP in this study, 80% dense Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) electrolytes were obtained at 120 degrees C in 20minutes. After a 5minute belt furnace treatment at 650 degrees C, 50 degrees C above the crystallization onset, Li-ion conductivity was 5.4x10(-5)S/cm at 25 degrees C. Another route to high ionic conductivities similar to 10(-4)S/cm at 25 degrees C is through a composite LAGP - (PVDF-HFP) co-sintered system that was soaked in a liquid electrolyte. After soaking 95, 90, 80, 70, and 60vol% LAGP in 1M LiPF6 EC-DMC (50:50vol%) at 25 degrees C, Li-ion conductivities were 1.0x10(-4)S/cm at 25 degrees C with 5 to 10wt% liquid electrolyte. This paper focuses on the microstructural development and impedance contributions within solid electrolytes processed by (i) Crystallization of bulk glasses, (ii) CSP of ceramics, and (iii) CSP of ceramic-polymer composites. CSP may offer a new route to enable multilayer battery technology by avoiding the detrimental effects of high temperature heat treatments.
引用
收藏
页码:2123 / 2135
页数:13
相关论文
共 50 条
  • [21] Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell
    Chung, Habin
    Kang, Byoungwoo
    CHEMISTRY OF MATERIALS, 2017, 29 (20) : 8611 - 8619
  • [22] Low temperature sintering of crystallized Li1.5Al0.5Ge1.5(PO4)3 using hot-press technique
    Kotobuki, Masashi
    Yan, Binggong
    Pan, Feng
    Lu, Li
    Savilov, Seruguei
    Aldoshin, Sergei
    MATERIALS TODAY-PROCEEDINGS, 2019, 17 : 408 - 415
  • [23] All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)3 As Electrolyte Without Polymer Interfacial Adhesion
    Meesala, Yedukondalu
    Chen, Chen-Yu
    Jena, Anirudha
    Liao, Yu-Kai
    Hu, Shu-Fen
    Chang, Ho
    Liu, Ru-Shi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26) : 14383 - 14389
  • [24] Preparation of Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes via the co-precipitation method
    Kotobuki, Masashi
    Koishi, Masaki
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2019, 7 (04) : 551 - 557
  • [25] Electrochemical characterization of in situ polymerized composite solid electrolyte incorporating three dimensional Li1.5Al0.5Ge1.5(PO4)3 framework
    Kim, Jong -Min
    Sangabathula, Omkar
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF POWER SOURCES, 2024, 613
  • [26] Compatibility of LiCoPO4 Cathode Material with Li1.5Al0.5Ge1.5(PO4)3 Lithium-Ion-Conducting Solid Electrolyte
    G. B. Kunshina
    I. V. Bocharova
    V. I. Ivanenko
    Inorganic Materials, 2020, 56 : 204 - 210
  • [27] Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics
    Mariappan, Chinnasamy R.
    Yada, Chihiro
    Rosciano, Fabio
    Roling, Bernhard
    JOURNAL OF POWER SOURCES, 2011, 196 (15) : 6456 - 6464
  • [28] Compatibility of LiCoPO4 Cathode Material with Li1.5Al0.5Ge1.5(PO4)3 Lithium-Ion-Conducting Solid Electrolyte
    Kunshina, G. B.
    Bocharova, I. V.
    Ivanenko, V. I.
    INORGANIC MATERIALS, 2020, 56 (02) : 204 - 210
  • [29] Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode
    Zhang, Zhihua
    Chen, Shaojie
    Yang, Jing
    Liu, Gaozhan
    Yao, Xiayin
    Cui, Ping
    Xu, Xiaoxiong
    ELECTROCHIMICA ACTA, 2019, 297 : 281 - 287
  • [30] Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics
    Kubanska, A.
    Castro, L.
    Tortet, L.
    Schaef, O.
    Dolle, M.
    Bouchet, R.
    SOLID STATE IONICS, 2014, 266 : 44 - 50