Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case

被引:45
作者
Pozzorini, S. [1 ]
Remiddi, E. [1 ]
机构
[1] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany
关键词
radiative corrections; Feynman diagrams; two-loop calculations; master integrals; differential equations;
D O I
10.1016/j.cpc.2006.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a double precision routine in Fortran for the precise and fast numerical evaluation of the two Master Integrals (MIs) of the equal mass two-loop sunrise graph for arbitrary momentum transfer in d = 2 and d = 4 dimensions. The routine implements the accelerated power series expansions obtained by solving the corresponding differential equations for the MIs at their singular points. With a maximum of 22 terms for the worst case expansion a relative precision of better than a part in 10(15) is achieved for arbitrary real values of the momentum transfer.
引用
收藏
页码:381 / 387
页数:7
相关论文
共 5 条
[1]   Numerical evaluation of harmonic polylogarithms [J].
Gehrmann, T ;
Remiddi, E .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (02) :296-312
[2]   Analytic treatment of the two loop equal mass sunrise graph [J].
Laporta, S ;
Remiddi, E .
NUCLEAR PHYSICS B, 2005, 704 (1-2) :349-386
[3]   Harmonic polylogarithms [J].
Remiddi, E ;
Vermaseren, JAM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (05) :725-754
[4]  
THOOFT G, 1979, NUCL PHYS B, V153, P365, DOI 10.1016/0550-3213(79)90605-9
[5]  
WOLFRAM S, MATH VERSION 4 2