φp-optimal designs for a linear log contrast model for experiments with mixtures

被引:0
作者
Lo Huang, Mong-Na [1 ]
Huang, Miao-Kuan [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Natl Formosa Univ, Ctr Gen Educ, Yunlin 632, Taiwan
关键词
A-optimal; Complete class; D-optimal; Kiefer ordering; SIMPLEX-DESIGNS;
D O I
10.1007/s00184-008-0190-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mixture experiment is an experiment in which the k ingredients are nonnegative and subject to the simplex restriction Sigma(k)(i=1) x(i) = 1 on the (k - 1)-dimensional probability simplex Sk-1. In this work, an essentially complete class of designs under the Kiefer ordering for a linear log contrast model with a mixture experiment is presented. Based on the completeness result, phi(p)-optimal designs for all p, -infinity <= p <= 1 including D- and A-optimal are obtained, where the eigenvalues of the design moment matrix are used. By using the approach presented here, we gain insight on how these phi(p)-optimal designs behave.
引用
收藏
页码:239 / 256
页数:18
相关论文
共 12 条
[1]  
AITCHISON J, 1984, BIOMETRIKA, V71, P323
[2]  
[Anonymous], 1993, OPTIMAL DESIGN EXPT
[3]   OPTIMAL-DESIGN FOR A LINEAR LOG CONTRAST MODEL FOR EXPERIMENTS WITH MIXTURES [J].
CHAN, LY .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 20 (01) :105-113
[4]   A- and D-optimal designs for a log contrast model for experiments with mixtures [J].
Chan, LY ;
Guan, YN .
JOURNAL OF APPLIED STATISTICS, 2001, 28 (05) :537-546
[7]  
Cornell J. A., 2011, Experiments with mixtures-designs, models, and the analysis of mixture data
[8]   Kiefer ordering of simplex designs for first- and second-degree mixture models [J].
Draper, NR ;
Pukelsheim, F .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (02) :325-348
[9]   Kiefer ordering of simplex designs for second-degree mixture models with four or more ingredients [J].
Draper, NR ;
Heiligers, B ;
Pukelsheim, F .
ANNALS OF STATISTICS, 2000, 28 (02) :578-590
[10]  
DRAPER NR, 1991, METRIKA, V38, P129