Methods for the Uncertainty Quantification of Aircraft Simulation Models

被引:8
作者
Rosic, Bojana V. [1 ]
Diekmann, Jobst H. [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Comp Sci, D-38106 Braunschweig, Niedersachsen, Germany
[2] German Aerosp Ctr, DLR, Inst Flight Syst, D-38106 Braunschweig, Niedersachsen, Germany
来源
JOURNAL OF AIRCRAFT | 2015年 / 52卷 / 04期
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS;
D O I
10.2514/1.C032856
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The paper deals with the propagation of uncertainty in input parameters through the aircraft model in clean cruise configuration triggered by the elevator pulse. Assuming aerodynamic coefficients as random variables and processes, the evolution of uncertainties in the aircraft state is estimated with the help of efficient nonintrusive procedures-stochastic collocation and the nonintrusive Galerkin approaches, here contrasted to the slow convergent Monte Carlo integration. These numerical methods are implemented by using the flight simulator in a black-box manner. In this way, the set of samples of aircraft states is simply obtained by solving the corresponding systems of deterministic ordinary differential equations. Additionally, the paper provides the variance-based sensitivity analysis of a flight model carried out with the help of the polynomial-chaos approach.
引用
收藏
页码:1247 / 1255
页数:9
相关论文
共 38 条
  • [11] Gerhold T, 2005, NOTE N FL MECH MUL D, V89, P81
  • [12] Likelihood approximation by numerical integration on sparse grids
    Heiss, Florian
    Winschel, Viktor
    [J]. JOURNAL OF ECONOMETRICS, 2008, 144 (01) : 62 - 80
  • [13] Hida T., 1993, White Noise: An Infinite Dimensional Calculus, Mathematics and Its Applications, DOI [10.1007/978-94-017-3680-0, DOI 10.1007/978-94-017-3680-0]
  • [14] KHOSHNOUD F, 2005, THESIS BRUNEL U LOND
  • [15] Klimke W. A., 2005, THESIS U STUTTGART S
  • [16] An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
    Ma, Xiang
    Zabaras, Nicholas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) : 3084 - 3113
  • [17] Stochastic finite elements: Computational approaches to stochastic partial differential equations
    Matthies, Hermann G.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (11): : 849 - 873
  • [18] Moritsch H, 2006, THESIS TU WIEN WIEN
  • [19] Nassiri N., 2004, P 55 INT ASTR C 2004, DOI [10.2514/6.IAC-04-A.1.07, DOI 10.2514/6.IAC-04-A.1.07]
  • [20] A sparse grid stochastic collocation method for partial differential equations with random input data
    Nobile, F.
    Tempone, R.
    Webster, C. G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2309 - 2345