Automatic Diagnosis of Melanoid Skin Lesions Using Machine Learning Methods

被引:5
作者
Grzesiak-Kopec, Katarzyna [1 ]
Nowak, Leszek [1 ]
Ogorzalek, Maciej [1 ]
机构
[1] Jagiellonian Univ, Dept Informat Technol, Krakow, Poland
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I | 2015年 / 9119卷
关键词
Computer aided diagnostic; Machine learning; Melanoma; DERMOSCOPY;
D O I
10.1007/978-3-319-19324-3_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dermatology is one of the fields where computer aided diagnostic is developing rapidly. The presented research concentrates on creation of automatic methods for melanoid skin lesions diagnosis using machine learning methods. In the experiments 1010 samples described in [5] are used. There are 275 melanoma cases and 735 benign ones. Three different machine learning methods are applied, namely the Naive Bayes classifier, the Random Forest, the K* instance-based classifier, and Attributional Calculus. The obtained results confirm that clinical history context and dermoscopic structures together with the selected machine learning methods may be an important and accurate diagnostic tool.
引用
收藏
页码:577 / 585
页数:9
相关论文
共 20 条
[1]   Automatic Imaging System With Decision Support for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis [J].
Alcon, Jose Fernandez ;
Ciuhu, Calina ;
ten Kate, Warner ;
Heinrich, Adrienne ;
Uzunbajakava, Natallia ;
Krekels, Gertruud ;
Siem, Denny ;
de Haan, Gerard .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009, 3 (01) :14-25
[2]  
[Anonymous], ISG 821 U ILL URB DE
[3]  
[Anonymous], P OP RES ITS APPL EN
[4]  
[Anonymous], 2014, CANC FACTS FIG
[5]  
[Anonymous], 063 MLI G MAS U
[6]  
[Anonymous], 2004, 043 MLI G MAS U
[7]   Dermatoscopic pitfalls in differentiating pigmented Spitz naevi from cutaneous melanomas [J].
Argenziano, G ;
Scalvenzi, M ;
Staibano, S ;
Brunetti, B ;
Piccolo, D ;
Delfino, M ;
De Rosa, G ;
Soyer, HP .
BRITISH JOURNAL OF DERMATOLOGY, 1999, 141 (05) :788-793
[8]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[9]  
Argenziano G, 2000, INTERACTIVE ATLAS DE
[10]  
Breiman L., 2001, J. Clin. Microbiol, V45, P5