Nordhaus-Gaddum type inequalities for Laplacian and signless Laplacian eigenvalues

被引:0
作者
Ashraf, F. [1 ,2 ]
Tayfeh-Rezaie, B. [2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Signless Laplacian eigenvalues of graphs; Laplacian eigenvalues of graphs; Nordhaus-Gaddum type inequalities; Laplacian spread; SPREAD;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q(1)(G) and Laplacian eigenvalues of G by mu(1)(G) >= ... >= mu(n-1)(G) >= mu(n)(G) = 0. It is a conjecture on Laplacian spread of graphs that mu(1)(G) - mu(n-1)(G) <= n - 1 or equivalently mu(1)(G) + mu(1)((G) over bar) <= 2n - 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, mu(1)(G)mu(1)((G) over bar) <= n(n - 1). Aouchiche and Hansen [Discrete Appl. Math. 2013] conjectured that q(1)(G) + q(1)((G) over bar) <= 3n - 4 and q(1)(G)q(1)((G) over bar) <= 2n(n - 2). We prove the former and disprove the latter by constructing a family of graphs H-n where q(1)(H-n)q(1)((H-n) over bar) is about 2.15n(2) + O(n).
引用
收藏
页数:13
相关论文
共 23 条
  • [1] UPPER BOUNDS ON ORDER OF A CLIQUE OF A GRAPH
    AMIN, AT
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (04) : 569 - &
  • [2] [Anonymous], CZECHOSLOVAK MATH J
  • [3] A survey of Nordhaus-Gaddum type relations
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 466 - 546
  • [4] The Laplacian spread of unicyclic graphs
    Bao, Yan-Hong
    Tan, Ying-Ying
    Fan, Yi-Zheng
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1011 - 1015
  • [5] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [6] Chen YQ, 2009, ELECTRON J COMB, V16
  • [7] On a conjecture of V. Nikiforov
    Csikvari, Peter
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4522 - 4526
  • [8] Cvetkovic D, 2010, An Introduction to the Theory of Graph Spectra
  • [9] Maximizing the sum of the squares of the degrees of a graph
    Das, KC
    [J]. DISCRETE MATHEMATICS, 2004, 285 (1-3) : 57 - 66
  • [10] Fan YZ, 2008, DISCRETE MATH THEOR, V10, P79