On real algebras generated by positive and nonnegative matrices

被引:1
作者
Kolegov, N. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
关键词
Real matrix algebras; Nonnegative matrices; Positive matrices; Semi-commuting matrices; THEOREM;
D O I
10.1016/j.laa.2020.11.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Algebras generated by strictly positive matrices are described up to similarity, including the commutative, simple, and semisimple cases. We provide sufficient conditions for some block diagonal matrix algebras to be generated by a set of nonnegative matrices up to similarity. Also we find all realizable dimensions of algebras generated by two non-negative semi-commuting matrices. The last result provides the solution to the problem posed by M. Kandic, K. Sivic (2017) [13]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 65
页数:20
相关论文
共 24 条
[1]   On nonnegative matrices with prescribed eigenvalues and diagonal entries [J].
Alfaro, Jaime H. ;
Pasten, Germain ;
Soto, Ricardo L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 556 :400-420
[2]   On nonnegative matrices similar to positive matrices [J].
Borobia, A ;
Moro, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 266 :365-379
[3]   Full algebras of matrices [J].
Cigler, Grega ;
Jerman, Marjan ;
Wojciechowski, Piotr J. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (08) :1511-1521
[4]   Universal realizability of spectra with two positive eigenvalues [J].
Collao, Macarena ;
Johnson, Charles R. ;
Soto, Ricardo L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 :226-239
[5]   The diagonalizable nonnegative inverse eigenvalue problem [J].
Cronin, Anthony G. ;
Laffey, Thomas J. .
SPECIAL MATRICES, 2018, 6 (01) :273-281
[6]   On algebras generated by positive operators [J].
Drnovsek, Roman .
POSITIVITY, 2018, 22 (03) :815-828
[7]   The nonnegative inverse eigenvalue problem [J].
Egleston, PD ;
Lenker, TD ;
Narayan, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :475-490
[8]   Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalue Problem [J].
Ellard, Richard ;
Smigoc, Helena .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 :521-552
[9]  
Gantmacher F. R., 1960, THEORY MATRICES
[10]   A resolution of Paz's conjecture in the presence of a nonderogatory matrix [J].
Guterman, Alexander ;
Laffey, Thomas ;
Markova, Olga ;
Smigoc, Helena .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 543 :234-250