Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest

被引:82
作者
Campos-Taberner, Manuel [1 ]
Romero-Soriano, Adriana [2 ]
Gatta, Carlo [3 ]
Camps-Valls, Gustau [1 ]
Lagrange, Adrien [4 ]
Le Saux, Bertrand [4 ]
Beaupere, Anne [4 ]
Boulch, Alexandre [4 ]
Chan-Hon-Tong, Adrien [4 ]
Herbin, Stephane [4 ]
Randrianarivo, Hicham [4 ]
Ferecatu, Marin [5 ]
Shimoni, Michal [6 ]
Moser, Gabriele [7 ]
Tuia, Devis [8 ]
机构
[1] Univ Valencia, E-46100 Valencia, Spain
[2] Univ Barcelona, E-08007 Barcelona, Spain
[3] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[4] French Aerosp Lab, Off Natl Etud Rech Aerospatiales, F-91123 Palaiseau, France
[5] Conservatoire Natl Arts & Metiers Cedr, F-75141 Paris, France
[6] Royal Mil Acad, Signal & Image Ctr, Dept Elect Engn, B-1000 Brussels, Belgium
[7] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architec, I-16145 Genoa, Italy
[8] Univ Zurich, Dept Geog, CH-8057 Zurich, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Deep neural networks; extremely high spatial resolution; image analysis and data fusion (IADF); landcover classification; LiDAR; multiresolution-; multisource-; multimodal-data fusion; HYPERSPECTRAL IMAGES; CLASSIFICATION;
D O I
10.1109/JSTARS.2016.2569162
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we discuss the scientific outcomes of the 2015 data fusion contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource studies. The 2015 edition of the contest proposed a multiresolution and multisensorial challenge involving extremely high-resolution RGB images and a three-dimensional (3-D) LiDAR point cloud. The competition was framed in two parallel tracks, considering 2-D and 3-D products, respectively. In this paper, we discuss the scientific results obtained by the winners of the 2-D contest, which studied either the complementarity of RGB and LiDAR with deep neural networks (winning team) or provided a comprehensive benchmarking evaluation of new classification strategies for extremely high-resolution multimodal data (runner-up team). The data and the previously undisclosed ground truth will remain available for the community and can be obtained at http://www.grss-ieee.org/community/technicalcommittees/data-fusion/2015-ieee-grss-data-fusion-contest/. The 3-D part of the contest is discussed in the Part-B paper [1].
引用
收藏
页码:5547 / 5559
页数:13
相关论文
共 65 条
[21]  
Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059
[22]   Fusion of hyperspectral images and lidar-based dems for coastal mapping [J].
Elaksher, Ahmed F. .
OPTICS AND LASERS IN ENGINEERING, 2008, 46 (07) :493-498
[23]   Decision fusion for the classification of urban remote sensing images [J].
Fauvel, Mathieu ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2828-2838
[24]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[25]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[26]   Multimodal Classification of Remote Sensing Images: A Review and Future Directions [J].
Gomez-Chova, Luis ;
Tuia, Devis ;
Moser, Gabriele ;
Camps-Valls, Gustau .
PROCEEDINGS OF THE IEEE, 2015, 103 (09) :1560-1584
[27]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[28]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[29]   Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization [J].
Koetz, Benjamin ;
Sun, Guoqing ;
Morsdorf, Felix ;
Ranson, K. J. ;
Kneubuehler, Mathias ;
Itten, Klaus ;
Allgoewer, Britta .
REMOTE SENSING OF ENVIRONMENT, 2007, 106 (04) :449-459
[30]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90