Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest

被引:80
作者
Campos-Taberner, Manuel [1 ]
Romero-Soriano, Adriana [2 ]
Gatta, Carlo [3 ]
Camps-Valls, Gustau [1 ]
Lagrange, Adrien [4 ]
Le Saux, Bertrand [4 ]
Beaupere, Anne [4 ]
Boulch, Alexandre [4 ]
Chan-Hon-Tong, Adrien [4 ]
Herbin, Stephane [4 ]
Randrianarivo, Hicham [4 ]
Ferecatu, Marin [5 ]
Shimoni, Michal [6 ]
Moser, Gabriele [7 ]
Tuia, Devis [8 ]
机构
[1] Univ Valencia, E-46100 Valencia, Spain
[2] Univ Barcelona, E-08007 Barcelona, Spain
[3] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[4] French Aerosp Lab, Off Natl Etud Rech Aerospatiales, F-91123 Palaiseau, France
[5] Conservatoire Natl Arts & Metiers Cedr, F-75141 Paris, France
[6] Royal Mil Acad, Signal & Image Ctr, Dept Elect Engn, B-1000 Brussels, Belgium
[7] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architec, I-16145 Genoa, Italy
[8] Univ Zurich, Dept Geog, CH-8057 Zurich, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Deep neural networks; extremely high spatial resolution; image analysis and data fusion (IADF); landcover classification; LiDAR; multiresolution-; multisource-; multimodal-data fusion; HYPERSPECTRAL IMAGES; CLASSIFICATION;
D O I
10.1109/JSTARS.2016.2569162
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we discuss the scientific outcomes of the 2015 data fusion contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource studies. The 2015 edition of the contest proposed a multiresolution and multisensorial challenge involving extremely high-resolution RGB images and a three-dimensional (3-D) LiDAR point cloud. The competition was framed in two parallel tracks, considering 2-D and 3-D products, respectively. In this paper, we discuss the scientific results obtained by the winners of the 2-D contest, which studied either the complementarity of RGB and LiDAR with deep neural networks (winning team) or provided a comprehensive benchmarking evaluation of new classification strategies for extremely high-resolution multimodal data (runner-up team). The data and the previously undisclosed ground truth will remain available for the community and can be obtained at http://www.grss-ieee.org/community/technicalcommittees/data-fusion/2015-ieee-grss-data-fusion-contest/. The 3-D part of the contest is discussed in the Part-B paper [1].
引用
收藏
页码:5547 / 5559
页数:13
相关论文
共 65 条
  • [1] Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest
    Alparone, Luciano
    Wald, Lucien
    Chanussot, Jocelyn
    Thomas, Claire
    Gamba, Paolo
    Bruce, Lori Mann
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3012 - 3021
  • [2] Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring
    Amoros-Lopez, Julia
    Gomez-Chova, Luis
    Alonso, Luis
    Guanter, Luis
    Zurita-Milla, Raul
    Moreno, Jose
    Camps-Valls, Gustavo
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 132 - 141
  • [3] [Anonymous], 2006, NIPS
  • [4] [Anonymous], 2014, P INT C LEARN REP
  • [5] [Anonymous], 2011, P 28 INT C MACHINE L
  • [6] [Anonymous], 2013, REMOTE SENSING DIGIT, DOI [https://doi.org/10.1007/978-3-642-30062-2, DOI 10.1007/978-3-642-30062-2]
  • [7] [Anonymous], 2014, P WHISPERS
  • [8] Multi-Modal and Multi-Temporal Data Fusion: Outcome of the 2012 GRSS Data Fusion Contest
    Berger, Christian
    Voltersen, Michael
    Eckardt, Robert
    Eberle, Jonas
    Heyer, Thomas
    Salepci, Nesrin
    Hese, Soeren
    Schmullius, Christiane
    Tao, Junyi
    Auer, Stefan
    Bamler, Richard
    Ewald, Ken
    Gartley, Michael
    Jacobson, John
    Buswell, Alan
    Du, Qian
    Pacifici, Fabio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1324 - 1340
  • [9] Bovolo F., 2016, IEEE GEOSCI REMOTE S, V3, P8
  • [10] Calinski T., 1974, Commun StatTheory Methods, V3, P1, DOI DOI 10.1080/03610927408827101