The M/M/C queueing system in a random environment

被引:19
作者
Liu, Zaiming [1 ]
Yu, Senlin [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Random environment; Markov modulated; M/M/C system; Applied probability; MODULATED SERVICE RATES; M/G/1; QUEUE; MARKOV; TIMES;
D O I
10.1016/j.jmaa.2015.11.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An M/M/C queueing system operating in a Markovian environment is studied. This paper focuses on the stationary behavior and presents the theoretical framework. For a special case, analytical results are derived that are analogous to the classical solutions for the simple M/M/C queue. The elaborate analysis of a specific case is given to illustrate the basic idea of the framework. A technical proof with respect to the existence of d - 1 roots is displayed to sustain the corresponding theory. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:556 / 567
页数:12
相关论文
共 12 条
[1]   Single-server queue with Markov-dependent inter-arrival and service times [J].
Adan, IJBF ;
Kulkarni, VG .
QUEUEING SYSTEMS, 2003, 45 (02) :113-134
[2]   Modeling traffic flow interrupted by incidents [J].
Baykal-Guersoy, M. ;
Xiao, W. ;
Ozbay, K. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 195 (01) :127-138
[3]   Stochastic decomposition in M/M/∞ queues with Markov modulated service rates [J].
Baykal-Gursoy, M ;
Xiao, WH .
QUEUEING SYSTEMS, 2004, 48 (1-2) :75-88
[4]   Markov-modulated infinite-server queues with general service times [J].
Blom, J. ;
Kella, O. ;
Mandjes, M. ;
Thorsdottir, H. .
QUEUEING SYSTEMS, 2014, 76 (04) :403-424
[5]   The M/G/1 queue with two service speeds [J].
Boxma, OJ ;
Kurkova, IA .
ADVANCES IN APPLIED PROBABILITY, 2001, 33 (02) :520-540
[6]   THE UNRELIABLE M/M/1 RETRIAL QUEUE IN A RANDOM ENVIRONMENT [J].
Cordeiro, James D. ;
Kharoufeh, Jeffrey P. .
STOCHASTIC MODELS, 2012, 28 (01) :29-48
[7]   The M/M/∞ queue in a random environment [J].
Falin, G. .
QUEUEING SYSTEMS, 2008, 58 (01) :65-76
[8]   Generalized Pollaczek-Khinchin Formula for Markov Channels [J].
Huang, Liang ;
Lee, Tony T. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (08) :3530-3540
[9]   Analysis of the M/G/1 queue in multi-phase random environment with disasters [J].
Jiang, Tao ;
Liu, Liwei ;
Li, Jianjun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) :857-873
[10]   A single server queue with Markov modulated service rates and impatient customers [J].
Kim, Bara ;
Kim, Jeongsim .
PERFORMANCE EVALUATION, 2015, 83-84 :1-15