Coexisting bifurcations in a memristive hyperchaotic oscillator

被引:71
作者
Fonzin, T. Fozin [1 ,2 ,3 ]
Srinivasan, K. [4 ]
Kengne, J. [5 ]
Pelap, F. B. [3 ,6 ]
机构
[1] Univ Dschang, Fac Sci, Unite Rech Mat Condensee Elect & Traitement Signa, POB 69, Dschang, Cameroon
[2] Bharathidasan Univ, Ctr Nonlinear Dynam CNLD, Dept Phys, Tiruchirappalli 620024, India
[3] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, POB 812, Yaounde, Cameroon
[4] Nehru Mem Coll, Dept Phys, PO 621007, Tiruchirappalli, India
[5] Univ Dschang, IUT FV Bandjoun, Unite Rech Automat Informat Appl LAIA, POB 134, Bandjoun, Cameroon
[6] Univ Dschang, Fac Sci, Dept Phys, Unite Rech Mecan & Modelisat Syst Phys L2MSP, POB 69, Dschang, Cameroon
关键词
Memristor; Coexisting attractors; Hyperchaos; Two parameter Lyapunov exponents; Experimental study; MULTIPLE ATTRACTORS; JERK SYSTEM; MULTISTABILITY; EMULATOR; CHAOS; CIRCUITS; DYNAMICS;
D O I
10.1016/j.aeue.2018.03.035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the dynamical behavior of the Tamasevicius et al. (1997) oscillator (named TCMNL hereafter) considering memristor as the nonlinear element by replacing the single diode in the original circuit. Various methods for detecting chaos/hyperchaos including bifurcation diagrams, spectrum of Lyapunov exponent, two parameter Lyapunov exponent, Poincare sections and phase portraits are exploited to establish the connection between the system parameters and various complicated dynamics. By tuning the system parameters, some striking phenomena such as quasi -periodic oscillations and asymmetric pair of stable/unstable attractors are depicted. It is also found that the considered memristor induces the phenomenon of coexistence of attractors in wide ranges of bifurcation parameter. Finally, the hardware circuit is implemented and experimental observations are found to be in good agreement with the numerical investigations.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 73 条
[61]  
Strogatz S., 2014, Studies in Nonlinearity
[62]   The missing memristor found [J].
Strukov, Dmitri B. ;
Snider, Gregory S. ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2008, 453 (7191) :80-83
[63]   Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system [J].
Sun, Keihui ;
Liu, Xuan ;
Zhu, Congxu ;
Sprott, J. C. .
NONLINEAR DYNAMICS, 2012, 69 (03) :1383-1391
[64]   Synchronizing hyperchaos with a single variable [J].
Tamasevicius, A ;
Cenys, A .
PHYSICAL REVIEW E, 1997, 55 (01) :297-299
[65]   Hyperchaotic oscillator with gyrators [J].
Tamasevicius, A ;
Cenys, A ;
Mykolaitis, G ;
Namajunas, A ;
Lindberg, E .
ELECTRONICS LETTERS, 1997, 33 (07) :542-544
[66]   Multiple attractors in stage-structured population models with birth pulses [J].
Tang, SY ;
Chen, LS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2003, 65 (03) :479-495
[67]   Hyperchaos in a modified canonical Chua's circuit [J].
Thamilmaran, K ;
Lakshmanan, M ;
Venkatesan, V .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01) :221-243
[68]   How much information is contained in a recurrence plot? [J].
Thiel, M ;
Romano, MC ;
Kurths, J .
PHYSICS LETTERS A, 2004, 330 (05) :343-349
[69]  
Wang X, 2017, COMPLEXITY
[70]   A Chaotic System with Two Stable Equilibrium Points: Dynamics, Circuit Realization and Communication Application [J].
Wang, Xiong ;
Akgul, Akif ;
Cicek, Serdar ;
Viet-Thanh Pham ;
Duy Vo Hoang .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08)