Generalized Lyapunov method for discontinuous systems

被引:38
作者
Guo, Zhenyuan [1 ]
Huang, Lihong [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Filippov solution; Stability; Convergence; Convergence in finite time; Discontinuous system; ASYMPTOTIC STABILITY; NEURAL-NETWORKS; CONVERGENCE;
D O I
10.1016/j.na.2009.01.220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear dynamical systems described by differential equations with discontinuous right-hand side and solutions intended in Filippov sense are considered. Based on Filippov differential inclusion and a new chain rule for differentiating regular functions along Filippov solution trajectories, different kinds of stability and convergence results are presented. Moreover, we investigate the stability and convergence for the corresponding perturbation system of the discontinuous system and some new criteria are addressed. (C) 2009 Published by Elsevier Ltd
引用
收藏
页码:3083 / 3092
页数:10
相关论文
共 25 条
[1]   ASYMPTOTIC STABILITY OF NONAUTONOMOUS SYSTEMS BY LIAPUNOVS DIRECT METHOD [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1995, 25 (04) :273-280
[2]   New asymptotic stability criterion for nonlinear time-variant differential equations [J].
Aeyels, D ;
Peuteman, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :968-971
[3]  
Aubin JP., 1984, Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften
[4]   Nonpathological Lyapunov functions and discontinuous Caratheodory systems [J].
Bacciotti, A ;
Ceragioli, F .
AUTOMATICA, 2006, 42 (03) :453-458
[5]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[6]  
BACCIOTTI A, 2003, ABSTR APPL ANAL, V20, P1159
[7]  
Bacciotti A., 2005, Lyapunov Functions and Stability in Control Theory
[8]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[9]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[10]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114