Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Russmann's non-degeneracy condition

被引:13
作者
Zhang, Dongfeng [1 ]
Xu, Junxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; KAM iteration; Gevrey-smoothness;
D O I
10.1016/j.jmaa.2005.10.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove Gevrey-smoothness of elliptic lower-dimensional invariant tori for nearly integrable analytic Hamiltonian systems under Russmann's non-degeneracy condition by an improved KAM iteration. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 312
页数:20
相关论文
共 19 条
[1]   WHITNEY EXTENSION THEOREM FOR NONQUASIANALYTIC CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS [J].
BONET, J ;
BRAUN, RW ;
MEISE, R ;
TAYLOR, BA .
STUDIA MATHEMATICA, 1991, 99 (02) :155-184
[2]   Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach [J].
Broer, H ;
Hanssmann, H ;
Jorba, A ;
Villanueva, J ;
Wagener, F .
NONLINEARITY, 2003, 16 (05) :1751-1791
[3]  
BROER H, 1996, LECT NOTES MATH, V1645
[4]  
BRUNA J, 1980, J LOND MATH SOC, V22, P495
[5]  
Eliasson L. H., 1988, ANN SC NORM SUPER S, V15, P115
[6]   ON THE LEBESGUE MEASURE OF THE PERIODIC POINTS OF A CONTACT MANIFOLD [J].
PETKOV, V ;
POPOV, G .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (01) :91-102
[7]   Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms [J].
Popov, G .
ANNALES HENRI POINCARE, 2000, 1 (02) :223-248
[8]   KAM theorem for Gevrey Hamiltonians [J].
Popov, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1753-1786
[9]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608
[10]   INTEGRABILITY OF HAMILTONIAN-SYSTEMS ON CANTOR SETS [J].
POSCHEL, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :653-696