HIERARCHICALLY HYPERBOLIC SPACES II: COMBINATION THEOREMS AND THE DISTANCE FORMULA

被引:46
作者
Behrstock, Jason [1 ,2 ]
Hagen, Mark [3 ]
Sisto, Alessandro [4 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10017 USA
[2] CUNY, Lehman Coll, New York, NY 10017 USA
[3] Univ Bristol, Sch Math, Bristol, Avon, England
[4] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
geometric group theory; hierarchically hyperbolic; mapping class group; UNIFORM HYPERBOLICITY; ASYMPTOTIC CONES; GEOMETRY; SUBGROUPS; COMPLEX; GRAPH; AUTOMORPHISMS; DIMENSION; BOUNDARY; RANK;
D O I
10.2140/pjm.2019.299.257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a number of tools for finding and studying hierarchically hyperbolic spaces (HHS), a rich class of spaces including mapping class groups of surfaces, Teichmuller space with either the Teichmuller or Weil-Petersson metrics, right-angled Artin groups, and the universal cover of any compact special cube complex. We begin by introducing a streamlined set of axioms defining an HHS. We prove that all HHS satisfy a Masur-Minsky-style distance formula, thereby obtaining a new proof of the distance formula in the mapping class group without relying on the Masur-Minsky hierarchy machinery. We then study examples of HHS; for instance, we prove that when M is a closed irreducible 3-manifold then pi(1) M is an HHS if and only if it is neither Nil nor Sol. We establish this by proving a general combination theorem for trees of HHS (and graphs of HH groups). We also introduce a notion of "hierarchical quasiconvexity", which in the study of HHS is analogous to the role played by quasiconvexity in the study of Gromov-hyperbolic spaces.
引用
收藏
页码:257 / 338
页数:82
相关论文
共 9 条
  • [1] QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (05) : 909 - 996
  • [2] Convexity in hierarchically hyperbolic spaces
    Russell, Jacob
    Spriano, Davide
    Tran, Hung Cong
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (03): : 1167 - 1248
  • [3] Boundaries and automorphisms of hierarchically hyperbolic spaces
    Durham, Matthew Gentry
    Hagen, Mark F.
    Sisto, Alessandro
    GEOMETRY & TOPOLOGY, 2017, 21 (06) : 3659 - 3758
  • [4] Nonexistence of boundary maps for some hierarchically hyperbolic spaces
    Mousley, Sarah C.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (01): : 409 - 439
  • [5] Hierarchically hyperbolic spaces I: Curve complexes for cubical groups
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    GEOMETRY & TOPOLOGY, 2017, 21 (03) : 1731 - 1804
  • [6] A refined combination theorem for hierarchically hyperbolic groups
    Berlai, Federico
    Robbio, Bruno
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (04) : 1127 - 1203
  • [7] Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 890 - 926
  • [8] INVESTIGATION OF SOME FIXED POINT THEOREMS IN HYPERBOLIC SPACES FOR A THREE STEP ITERATION PROCESS
    Atalan, Yunus
    Karakaya, Vatan
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (04): : 929 - 947
  • [9] Local limit theorems in relatively hyperbolic groups II: the non-spectrally degenerate case
    Dussaule, Matthieu
    COMPOSITIO MATHEMATICA, 2022, 158 (04) : 764 - 830