Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions

被引:98
作者
Kitanine, N. [1 ]
Kozlowski, K. K. [2 ]
Maillet, J. M. [2 ]
Slavnov, N. A. [3 ]
Terras, V. [2 ]
机构
[1] Univ Cergy Pontoise, LPTM, CNRS UMR 8089, Cergy Pontoise, France
[2] Ecole Normale Super Lyon, Phys Lab, CNRS UMR 5672, F-69364 Lyon, France
[3] VA Steklov Math Inst, Moscow 117333, Russia
关键词
conformal field theory; correlation functions; integrable spin chains (vertex models); quantum integrability (Bethe ansatz); SPIN-CORRELATION-FUNCTIONS; FINITE-SIZE CORRECTIONS; 2-DIMENSIONAL ISING-MODEL; HEISENBERG ANTIFERROMAGNETIC CHAIN; INTERACTING BOSE-GAS; QUANTUM FIELD-THEORY; XXZ CHAIN; CONFORMAL-INVARIANCE; WAVE-FUNCTIONS; GROUND-STATE;
D O I
10.1088/1742-5468/2009/04/P04003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We describe a method to derive, from first principles, the long-distance asymptotic behavior of correlation functions of integrable models in the framework of the algebraic Bethe ansatz. We apply this approach to the longitudinal spin-spin correlation function of the XXZ Heisenberg spin-1/2 chain (with magnetic field) in the disordered regime as well as to the density-density correlation function of the interacting one-dimensional Bose gas. At leading order, the results confirm the Luttinger liquid and conformal field theory predictions.
引用
收藏
页数:66
相关论文
共 87 条
[71]   2-DIMENSIONAL ISING-MODEL AS AN EXACTLY SOLVABLE RELATIVISTIC QUANTUM FIELD-THEORY - EXPLICIT FORMULAS FOR N-POINT FUNCTIONS [J].
MCCOY, BM ;
TRACY, CA ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1977, 38 (15) :793-796
[72]   SPIN CORRELATION FUNCTIONS OF X-Y MODEL [J].
MCCOY, BM .
PHYSICAL REVIEW, 1968, 173 (02) :531-+
[73]   ISING FIELD-THEORY - QUADRATIC DIFFERENCE-EQUATIONS FOR THE N-POINT GREEN-FUNCTIONS ON THE LATTICE [J].
MCCOY, BM ;
PERK, JHH ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1981, 46 (12) :757-760
[74]   THEORY OF TOEPLITZ DETERMINANTS AND SPIN CORRELATIONS OF 2-DIMENSIONAL ISING MODEL .4. [J].
MCCOY, BM ;
WU, TT .
PHYSICAL REVIEW, 1967, 162 (02) :436-&
[75]   LINEAR ANTIFERROMAGNETIC CHAIN WITH ANISOTROPIC COUPLING [J].
ORBACH, R .
PHYSICAL REVIEW, 1958, 112 (02) :309-316
[76]  
Sato M., 1980, PUBL RIMS KYOTO U, V16, P531, DOI DOI 10.2977/PRIMS/1195187216
[78]  
Takhtadzhan L., 1979, Russ. Math. Surveys, V34, P11, DOI 10.1070/RM1979v034n05ABEH003909
[79]   ANTIFERROMAGNETIC LINEAR CHAIN [J].
WALKER, LR .
PHYSICAL REVIEW, 1959, 116 (05) :1089-1090
[80]  
Whittaker E.T., 1927, A Course in Modern Analysis, V4th