Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions

被引:98
作者
Kitanine, N. [1 ]
Kozlowski, K. K. [2 ]
Maillet, J. M. [2 ]
Slavnov, N. A. [3 ]
Terras, V. [2 ]
机构
[1] Univ Cergy Pontoise, LPTM, CNRS UMR 8089, Cergy Pontoise, France
[2] Ecole Normale Super Lyon, Phys Lab, CNRS UMR 5672, F-69364 Lyon, France
[3] VA Steklov Math Inst, Moscow 117333, Russia
关键词
conformal field theory; correlation functions; integrable spin chains (vertex models); quantum integrability (Bethe ansatz); SPIN-CORRELATION-FUNCTIONS; FINITE-SIZE CORRECTIONS; 2-DIMENSIONAL ISING-MODEL; HEISENBERG ANTIFERROMAGNETIC CHAIN; INTERACTING BOSE-GAS; QUANTUM FIELD-THEORY; XXZ CHAIN; CONFORMAL-INVARIANCE; WAVE-FUNCTIONS; GROUND-STATE;
D O I
10.1088/1742-5468/2009/04/P04003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We describe a method to derive, from first principles, the long-distance asymptotic behavior of correlation functions of integrable models in the framework of the algebraic Bethe ansatz. We apply this approach to the longitudinal spin-spin correlation function of the XXZ Heisenberg spin-1/2 chain (with magnetic field) in the disordered regime as well as to the density-density correlation function of the interacting one-dimensional Bose gas. At leading order, the results confirm the Luttinger liquid and conformal field theory predictions.
引用
收藏
页数:66
相关论文
共 87 条
[1]   CRITICAL-BEHAVIOR OF TWO-DIMENSIONAL SYSTEMS WITH CONTINUOUS SYMMETRIES [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1985, 55 (13) :1355-1358
[2]   Exact correlation amplitude for the S=1/2 Heisenberg antiferromagnetic chain [J].
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20) :4573-4581
[3]  
Aizenberg I. A., 1983, TRANSLATIONS MATH MO, V58
[4]  
[Anonymous], ARXIV08054586
[5]  
[Anonymous], Gaudin
[6]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[7]   Finite-size scaling for the spin-1/2 Heisenberg antiferromagnetic chain [J].
Barzykin, V ;
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (06) :867-874
[8]  
Baxter RJ., 1982, Exactly solved models in statistical mechanics
[9]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[10]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745