Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism

被引:19
作者
Han, Shuyu [1 ]
Lei, Chengxia [1 ]
Zhang, Xiaoyan [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 06期
关键词
SIRS epidemic reaction-diffusion model; Basic reproduction number; Endemic equilibria; Small diffusion (migration) rate; Asymptotic profile; POSITIVE STEADY-STATE; ASYMPTOTIC PROFILES; GLOBAL STABILITY; ENDEMIC EQUILIBRIUM; ELLIPTIC-EQUATIONS; DYNAMICS; TRANSMISSION; NUMBER; RISK;
D O I
10.1007/s00033-020-01418-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with an SIRS epidemic reaction-diffusion system with standard incidence infection mechanism in a spatially heterogeneous environment. We first establish the uniform bounds of solutions and then derive the threshold dynamics in terms of the basic reproduction number R-0. Our main focus is on the asymptotic profile of endemic equilibria (when exists) if the diffusion (migration) rate of the susceptible, infected or recovered population is small, and our results show that the disease always exists in the entire habitat in each case of small diffusion rate. This suggests that restricting the diffusion (migration) rate of population is not an effective strategy of disease eradication.
引用
收藏
页数:23
相关论文
共 44 条
[1]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[2]  
Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
[3]   SEMI-LINEAR SECOND-ORDER ELLIPTIC EQUATIONS IN L1 [J].
BREZIS, H ;
STRAUSS, WA .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) :565-590
[4]   Global transmission dynamics of a Zika virus model [J].
Cai, Yongli ;
Wang, Kai ;
Wang, Weiming .
APPLIED MATHEMATICS LETTERS, 2019, 92 :190-195
[5]  
Cai YL, 2017, MATH BIOSCI ENG, V14, P1071, DOI [10.3934/mbe.201705, 10.3934/mbe.2017056]
[6]   AN SIS INFECTION MODEL INCORPORATING MEDIA COVERAGE [J].
Cui, Jing-An ;
Tao, Xin ;
Zhu, Huaiping .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (05) :1323-1334
[7]   Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments [J].
Cui, Renhao ;
Lam, King-Yeung ;
Lou, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) :2343-2373
[8]   A spatial SIS model in advective heterogeneous environments [J].
Cui, Renhao ;
Lou, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :3305-3343
[9]  
de Jong MCM, 1995, Epidemic Models: Their Structure and Relation to Data, P84
[10]   Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model [J].
Deng, Keng ;
Wu, Yixiang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) :929-946