Synovial fluid fingerprinting in end-stage knee osteoarthritis A NOVEL BIOMARKER CONCEPT

被引:14
作者
Jayadev, C. [1 ]
Hulley, P. [1 ]
Swales, C. [1 ]
Snelling, S. [1 ]
Collins, G. [1 ]
Taylor, P. [2 ]
Price, A. [3 ]
机构
[1] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Oxford, England
[2] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Musculoskeletal Sci, Oxford, England
[3] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Orthopaed Surg, Oxford, England
关键词
Osteoarthritis; Biomarker; Machine learning; JOINT REPLACEMENT; OUTCOME MEASURE; INJURIES; DISEASE; MRI; PLS;
D O I
10.1302/2046-3758.99.BJR-2019-0192.R1
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Aims The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule synovial fluid analysis with machine learning to produce an accurate diagnostic biomarker model for end-stage knee OA (esOA). Methods Synovial fluid (SF) from patients with esOA, non-OA knee injury, and inflammatory knee arthritis were analyzed for 35 potential markers using immunoassays. Partial least square discriminant analysis (PLS-DA) was used to derive a biomarker model for cohort classification. The ability of the biomarker model to diagnose esOA was validated by identical wide-spectrum SF analysis of a test cohort of ten patients with esOA. Results PLS-DA produced a streamlined biomarker model with excellent sensitivity (95%), specificity (98.4%), and reliability (97.4%). The eight-biomarker model produced a fingerprint for esOA comprising type IIA procollagen N-terminal propeptide (PIIANP), tissue inhibitor of metalloproteinase (TIMP)-1, a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), monocyte chemoattractant protein (MCP)-1, interferon-gamma-inducible protein-10 (IP-10), and transforming growth factor (TGF)-beta 3. Receiver operating characteristic (ROC) analysis demonstrated excellent discriminatory accuracy: area under the curve (AUC) being 0.970 for esOA, 0.957 for knee injury, and 1 for inflammatory arthritis. All ten validation test patients were classified correctly as esOA (accuracy 100%; reliability 100%) by the biomarker model. Conclusion SF analysis coupled with machine learning produced a partially validated biomarker model with cohort-specific fingerprints that accurately and reliably discriminated esOA from knee injury and inflammatory arthritis with almost 100% efficacy. The presented findings and approach represent a new biomarker concept and potential diagnostic tool to stage disease in therapy trials and monitor the efficacy of such interventions.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 28 条
[21]   What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? [J].
Pelletier, J-P ;
Cooper, C. ;
Peterfy, C. ;
Reginster, J-Y ;
Brandi, M-L ;
Bruyere, O. ;
Chapurlat, R. ;
Cicuttini, Flavia M. ;
Conaghan, P. G. ;
Doherty, M. ;
Genant, H. ;
Giacovelli, G. ;
Hochberg, M. C. ;
Hunter, D. J. ;
Kanis, J. A. ;
Kloppenburg, M. ;
Laredo, J-D ;
McAlindon, T. ;
Nevitt, M. ;
Raynauld, J-P ;
Rizzoli, R. ;
Zilkens, C. ;
Roemer, F. W. ;
Martel-Pelletier, J. ;
Guermazi, A. .
ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 (10) :1594-1604
[22]   Joint injury causes knee osteoarthritis in young adults [J].
Roos, EM .
CURRENT OPINION IN RHEUMATOLOGY, 2005, 17 (02) :195-200
[23]  
Simkin Peter A., 1995, Current Opinion in Rheumatology, V7, P346, DOI 10.1097/00002281-199507000-00014
[24]   Centering, scaling, and transformations: improving the biological information content of metabolomics data [J].
van den Berg, Robert A. ;
Hoefsloot, Huub C. J. ;
Westerhuis, Johan A. ;
Smilde, Age K. ;
van der Werf, Mariet J. .
BMC GENOMICS, 2006, 7 (1)
[25]   Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 [J].
Vos, Theo ;
Flaxman, Abraham D. ;
Naghavi, Mohsen ;
Lozano, Rafael ;
Michaud, Catherine ;
Ezzati, Majid ;
Shibuya, Kenji ;
Salomon, Joshua A. ;
Abdalla, Safa ;
Aboyans, Victor ;
Abraham, Jerry ;
Ackerman, Ilana ;
Aggarwal, Rakesh ;
Ahn, Stephanie Y. ;
Ali, Mohammed K. ;
Alvarado, Miriam ;
Anderson, H. Ross ;
Anderson, Laurie M. ;
Andrews, Kathryn G. ;
Atkinson, Charles ;
Baddour, Larry M. ;
Bahalim, Adil N. ;
Barker-Collo, Suzanne ;
Barrero, Lope H. ;
Bartels, David H. ;
Basanez, Maria-Gloria ;
Baxter, Amanda ;
Bell, Michelle L. ;
Benjamin, Emelia J. ;
Bennett, Derrick ;
Bernabe, Eduardo ;
Bhalla, Kavi ;
Bhandari, Bishal ;
Bikbov, Boris ;
Bin Abdulhak, Aref ;
Birbeck, Gretchen ;
Black, James A. ;
Blencowe, Hannah ;
Blore, Jed D. ;
Blyth, Fiona ;
Bolliger, Ian ;
Bonaventure, Audrey ;
Boufous, Soufi Ane ;
Bourne, Rupert ;
Boussinesq, Michel ;
Braithwaite, Tasanee ;
Brayne, Carol ;
Bridgett, Lisa ;
Brooker, Simon ;
Brooks, Peter .
LANCET, 2012, 380 (9859) :2163-2196
[26]   Biomarkers: in combination they may do better [J].
Williams, Frances M. K. .
ARTHRITIS RESEARCH & THERAPY, 2009, 11 (05)
[27]   PLS-regression:: a basic tool of chemometrics [J].
Wold, S ;
Sjöström, M ;
Eriksson, L .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 58 (02) :109-130
[28]   Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity [J].
Yin, C-M. ;
Suen, W-C-W. ;
Lin, S. ;
Wu, X-M. ;
Li, G. ;
Pan, X-H. .
BONE & JOINT RESEARCH, 2017, 6 (11) :612-618