Synovial fluid fingerprinting in end-stage knee osteoarthritis A NOVEL BIOMARKER CONCEPT

被引:14
作者
Jayadev, C. [1 ]
Hulley, P. [1 ]
Swales, C. [1 ]
Snelling, S. [1 ]
Collins, G. [1 ]
Taylor, P. [2 ]
Price, A. [3 ]
机构
[1] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Oxford, England
[2] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Musculoskeletal Sci, Oxford, England
[3] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Orthopaed Surg, Oxford, England
关键词
Osteoarthritis; Biomarker; Machine learning; JOINT REPLACEMENT; OUTCOME MEASURE; INJURIES; DISEASE; MRI; PLS;
D O I
10.1302/2046-3758.99.BJR-2019-0192.R1
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Aims The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule synovial fluid analysis with machine learning to produce an accurate diagnostic biomarker model for end-stage knee OA (esOA). Methods Synovial fluid (SF) from patients with esOA, non-OA knee injury, and inflammatory knee arthritis were analyzed for 35 potential markers using immunoassays. Partial least square discriminant analysis (PLS-DA) was used to derive a biomarker model for cohort classification. The ability of the biomarker model to diagnose esOA was validated by identical wide-spectrum SF analysis of a test cohort of ten patients with esOA. Results PLS-DA produced a streamlined biomarker model with excellent sensitivity (95%), specificity (98.4%), and reliability (97.4%). The eight-biomarker model produced a fingerprint for esOA comprising type IIA procollagen N-terminal propeptide (PIIANP), tissue inhibitor of metalloproteinase (TIMP)-1, a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), monocyte chemoattractant protein (MCP)-1, interferon-gamma-inducible protein-10 (IP-10), and transforming growth factor (TGF)-beta 3. Receiver operating characteristic (ROC) analysis demonstrated excellent discriminatory accuracy: area under the curve (AUC) being 0.970 for esOA, 0.957 for knee injury, and 1 for inflammatory arthritis. All ten validation test patients were classified correctly as esOA (accuracy 100%; reliability 100%) by the biomarker model. Conclusion SF analysis coupled with machine learning produced a partially validated biomarker model with cohort-specific fingerprints that accurately and reliably discriminated esOA from knee injury and inflammatory arthritis with almost 100% efficacy. The presented findings and approach represent a new biomarker concept and potential diagnostic tool to stage disease in therapy trials and monitor the efficacy of such interventions.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 28 条
[11]   The role of pain and functional impairment in the decision to recommend total joint replacement in hip and knee osteoarthritis: an international cross-sectional study of 1909 patients. Report of the OARSI-OMERACT Task Force on total joint replacement [J].
Gossec, L. ;
Paternotte, S. ;
Maillefert, J. F. ;
Combescure, C. ;
Conaghan, P. G. ;
Davis, A. M. ;
Gunther, K. -P. ;
Hawker, G. ;
Hochberg, M. ;
Katz, J. N. ;
Kloppenburg, M. ;
Lim, K. ;
Lohmander, L. S. ;
Mahomed, N. N. ;
March, L. ;
Pavelka, K. ;
Punzi, L. ;
Roos, E. M. ;
Sanchez-Riera, L. ;
Singh, J. A. ;
Suarez-Almazor, M. E. ;
Dougados, M. .
OSTEOARTHRITIS AND CARTILAGE, 2011, 19 (02) :147-154
[12]   Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis [J].
Guermazi, Ali ;
Roemer, Frank W. ;
Burstein, Deborah ;
Hayashi, Daichi .
ARTHRITIS RESEARCH & THERAPY, 2011, 13 (06)
[13]   Understanding pain in osteoarthritis [J].
Gwilym, S. E. ;
Pollard, T. C. B. ;
Carr, A. J. .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 2008, 90B (03) :280-287
[14]   Patient decision aids in knee replacement surgery [J].
Jayadev, Chethan ;
Khan, Tanvir ;
Coulter, Angela ;
Beard, David J. ;
Price, Andrew J. .
KNEE, 2012, 19 (06) :746-750
[15]   Hyaluronidase treatment of synovial fluid to improve assay precision for biomarker research using multiplex immunoassay platforms [J].
Jayadev, Chethan ;
Rout, Raj ;
Price, Andrew ;
Hulley, Philippa ;
Mahoney, David .
JOURNAL OF IMMUNOLOGICAL METHODS, 2012, 386 (1-2) :22-30
[16]   Osteoarthritis: A disease of the joint as an organ [J].
Loeser, Richard F. ;
Goldring, Steven R. ;
Scanzello, Carla R. ;
Goldring, Mary B. .
ARTHRITIS AND RHEUMATISM, 2012, 64 (06) :1697-1707
[17]   The long-term consequence of anterior cruciate ligament and meniscus injuries - Osteoarthritis [J].
Lohmander, L. Stefan ;
Englund, P. Martin ;
Dahl, Ludvig L. ;
Roos, Ewa M. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2007, 35 (10) :1756-1769
[18]   OARSI-OMERACT initiative: defining thresholds for symptomatic severity and structural changes in disease modifying osteoarthritis drug (DMOAD) clinical trials [J].
Manno, R. L. ;
Bingham, C. O., III ;
Paternotte, S. ;
Gossec, L. ;
Halhol, H. ;
Giacovelli, G. ;
Rovati, L. ;
Mazzuca, S. A. ;
Clegg, D. O. ;
Shi, H. ;
Messi, E. Tajana ;
Lanzarotti, A. ;
Dougados, M. .
OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (02) :93-101
[19]   The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis [J].
Menashe, L. ;
Hirko, K. ;
Losina, E. ;
Kloppenburg, M. ;
Zhang, W. ;
Li, L. ;
Hunter, D. J. .
OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (01) :13-21
[20]   Determinants of demand for total hip and knee arthroplasty: a systematic literature review [J].
Mota, Ruben E. Mujica ;
Tarricone, Rosanna ;
Ciani, Oriana ;
Bridges, John F. P. ;
Drummond, Mike .
BMC HEALTH SERVICES RESEARCH, 2012, 12