Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

被引:327
作者
Agger, Jane W. [1 ]
Isaksen, Trine [1 ]
Varnai, Aniko [1 ]
Vidal-Melgosa, Silvia [2 ]
Willats, William G. T. [2 ]
Ludwig, Roland [3 ]
Horn, Svein J. [1 ]
Eijsink, Vincent G. H. [1 ]
Westereng, Bjorge [1 ,2 ,4 ]
机构
[1] Norwegian Univ Life Sci NMBU, Dept Chem Biotechnol & Food Sci, N-1432 As, Norway
[2] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, DK-1871 Frederiksberg, Denmark
[3] BOKU Univ Nat Resources & Life Sci, Dept Food Sci & Technol, A-1190 Vienna, Austria
[4] Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, DK-1958 Frederiksberg C, Denmark
关键词
biorefinery; metallo enzymes; GH61; CBM33; LYTIC POLYSACCHARIDE MONOOXYGENASES; GLYCOSIDE HYDROLASE FAMILY; NEUROSPORA-CRASSA; CELLULOSE; XYLOGLUCAN; OLIGOSACCHARIDES; NOMENCLATURE; HYDROLYSIS; ENDOGLUCANASES; LIGNOCELLULOSE;
D O I
10.1073/pnas.1323629111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity of well-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades various hemicelluloses, in particular xyloglucan. This activity was discovered using a glycan microarray-based screening method for detection of substrate specificities of carbohydrate-active enzymes, and further explored using defined oligomeric hemicelluloses, isolated polymeric hemicelluloses and cell walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect of the LPMOs that are present in current commercial cellulase mixtures in part is due to hitherto undetected LPMO activities on recalcitrant hemicellulose structures.
引用
收藏
页码:6287 / 6292
页数:6
相关论文
共 42 条
[21]   STUDIES ON CHEMICAL STRUCTURE OF KONJAC MANNAN .I. ISOLATION AND CHARACTERIZATION OF OLIGOSACCHARIDES FROM PARTIAL ACID HYDROLYZATE OF MANNAN [J].
KATO, K ;
MATSUDA, K .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1969, 33 (10) :1446-&
[22]   Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay [J].
Kittl, Roman ;
Kracher, Daniel ;
Burgstaller, Daniel ;
Haltrich, Dietmar ;
Ludwig, Roland .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[23]   Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases [J].
Li, Xin ;
Beeson, William T. ;
Phillips, Christopher M. ;
Marletta, Michael A. ;
Cate, Jamie H. D. .
STRUCTURE, 2012, 20 (06) :1051-1061
[24]   Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides [J].
Mikkelson, Atte ;
Maaheimo, Hannu ;
Hakala, Terhi K. .
CARBOHYDRATE RESEARCH, 2013, 372 :60-68
[25]   Biochemical characterization and mode of action of a thermostable endoglucanase purified from Thermoascus aurantiacus [J].
Parry, NJ ;
Beever, DE ;
Owen, E ;
Nerinckx, W ;
Claeyssens, M ;
Van Beeumen, J ;
Bhat, MK .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 404 (02) :243-253
[26]   Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research [J].
Pedersen, Henriette L. ;
Fangel, Jonatan U. ;
McCleary, Barry ;
Ruzanski, Christian ;
Rydahl, Maja G. ;
Ralet, Marie-Christine ;
Farkas, Vladimir ;
von Schantz, Laura ;
Marcus, Susan E. ;
Andersen, Mathias C. F. ;
Field, Rob ;
Ohlin, Mats ;
Knox, J. Paul ;
Clausen, Mads H. ;
Willats, William G. T. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (47) :39429-39438
[27]   Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa [J].
Phillips, Christopher M. ;
Beeson, William T. ;
Cate, Jamie H. ;
Marletta, Michael A. .
ACS CHEMICAL BIOLOGY, 2011, 6 (12) :1399-1406
[28]   Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components [J].
Quinlan, R. Jason ;
Sweeney, Matt D. ;
Lo Leggio, Leila ;
Otten, Harm ;
Poulsen, Jens-Christian N. ;
Johansen, Katja Salomon ;
Krogh, Kristian B. R. M. ;
Jorgensen, Christian Isak ;
Tovborg, Morten ;
Anthonsen, Annika ;
Tryfona, Theodora ;
Walter, Clive P. ;
Dupree, Paul ;
Xu, Feng ;
Davies, Gideon J. ;
Walton, Paul H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (37) :15079-15084
[29]   Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum [J].
Ray, Anamika ;
Saykhedkar, Sayali ;
Ayoubi-Canaan, Patricia ;
Hartson, Steven D. ;
Prade, Rolf ;
Mort, Andrew J. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (05) :2075-2089
[30]   Hemicelluloses [J].
Scheller, Henrik Vibe ;
Ulvskov, Peter .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 61, 2010, 61 :263-289