Hereditary quasirandomness without regularity

被引:5
作者
Conlon, David [1 ]
Fox, Jacob [2 ]
Sudakov, Benny [3 ]
机构
[1] Math Inst, Oxford OX2 6GG, England
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
GRAPHS;
D O I
10.1017/S0305004116001055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A result of Simonovits and Sos states that for any fixed graph H and any epsilon > 0 there exists delta > 0 such that if G is an n-vertex graph with the property that every S subset of V(G) contains p(e( H)) vertical bar S vertical bar(v(H)) +/- delta n(v(H)) labelled copies of H, then G is quasirandom in the sense that every S subset of V(G) contains 1/2 p vertical bar S vertical bar(2) +/- epsilon n(2) edges. The original proof of this result makes heavy use of the regularity lemma, resulting in a bound on delta(-1) which is a tower of twos of height polynomial in epsilon(-1). We give an alternative proof of this theorem which avoids the regularity lemma and shows that d may be taken to be linear in epsilon when H is a clique and polynomial in epsilon for general H. This answers a problem raised by Simonovits and Sos.
引用
收藏
页码:385 / 399
页数:15
相关论文
共 25 条
[11]  
Katona G.O.H., 1968, Theory of graphs, P187
[12]   TWO APPROACHES TO SIDORENKO'S CONJECTURE [J].
Kim, Jeong Han ;
Lee, Choongbum ;
Lee, Joonkyung .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) :5057-5074
[13]  
Krivelevich M, 2006, BOLYAI MATH STUD, P199
[14]  
Kruskal JB., 1963, MATH OPTIMIZATION TE, V10, P251
[15]  
Li J., COMBINATORI IN PRESS
[16]  
Lovasz L., 2012, Amer. Math. Soc. Colloq. Publ., V60
[17]  
Lovasz L., 2007, Combinatorial Problems and Exercises
[18]   Szemeredi's lemma for the analyst [J].
Lovasz, Laszlo ;
Szegedy, Balazs .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (01) :252-270
[19]  
REIHER C., UNPUB
[20]   QUASI-RANDOMNESS AND THE DISTRIBUTION OF COPIES OF A FIXED GRAPH [J].
Shapira, Asaf .
COMBINATORICA, 2008, 28 (06) :735-745