Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design

被引:38
作者
Liu, Qilei [1 ]
Zhang, Lei [1 ]
Tang, Kun [1 ]
Liu, Linlin [1 ]
Du, Jian [1 ]
Meng, Qingwei [2 ,3 ]
Gani, Rafiqul [4 ,5 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Inst Chem Proc Syst Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Pharmaceut Sci & Technol, State Key Lab Fine Chem, Dalian, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo, Peoples R China
[4] PSE SPEED, Skyttemosen 6, Allerod, Denmark
[5] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon, South Korea
基金
中国国家自然科学基金;
关键词
atom contribution; computer-aided molecular design; decomposition-based algorithm; machine learning; surface charge density profiles (sigma-profiles); AIDED MOLECULAR DESIGN; FRAMEWORK; IBUPROFEN; CHEMISTRY; DATABASE; PRODUCT; CAMD; TOOL;
D O I
10.1002/aic.17110
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solvents are widely used in chemical processes. The use of efficient model-based solvent selection techniques is an option worth considering for rapid identification of candidates with better economic, environment and human health properties. In this paper, an optimization-based MLAC-CAMD framework is established for solvent design, where a novel machine learning-based atom contribution method is developed to predict molecular surface charge density profiles (sigma-profiles). In this method, weighted atom-centered symmetry functions are associated with atomic sigma-profiles using a high-dimensional neural network model, successfully leading to a higher prediction accuracy in molecular sigma-profiles and better isomer identifications compared with group contribution methods. The new method is integrated with the computer-aided molecular design technique by formulating and solving a mixed-integer nonlinear programming model, where model complexities are managed with a decomposition-based strategy. Finally, two case studies involving crystallization and reaction are presented to highlight the wide applicability and effectiveness of the MLAC-CAMD framework.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] [Anonymous], 2016, GAUSS 09W REV 01 COM
  • [2] Application of CAMD in separating hydrocarbons by extractive distillation
    Chen, BH
    Lei, ZG
    Li, QS
    Li, CY
    [J]. AICHE JOURNAL, 2005, 51 (12) : 3114 - 3121
  • [3] A United Chemical Thermodynamic Model: COSMO-UNIFAC
    Dong, Yichun
    Zhu, Ruisong
    Guo, Yanyan
    Lei, Zhigang
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15954 - 15958
  • [4] Fast solvent screening via quantum chemistry: COSMO-RS approach
    Eckert, F
    Klamt, A
    [J]. AICHE JOURNAL, 2002, 48 (02) : 369 - 385
  • [5] An open and extensible sigma-profile database for COSMO-based models
    Ferrarini, F.
    Flores, G. B.
    Muniz, A. R.
    Soares, R. de P.
    [J]. AICHE JOURNAL, 2018, 64 (09) : 3443 - 3455
  • [6] A multi-layered view of chemical and biochemical engineering
    Gani, Rafiqul
    Baldyga, Jerzy
    Biscans, Beatrice
    Brunazzi, Elisabetta
    Charpentier, Jean-Claude
    Drioli, Enrico
    Feise, Hermann
    Furlong, Andrew
    Van Geem, Kevin M.
    de Hemptinne, Jean-Charles
    ten Kate, Antoon J. B.
    Kontogeorgis, Georgios M.
    Manenti, Flavio
    Marin, Guy B.
    Mansouri, Seyed Soheil
    Piccione, Patrick M.
    Povoa, Ana
    Rodrigo, Manuel Andres
    Sarup, Bent
    Sorensen, Eva
    Udugama, Isuru A.
    Woodley, John M.
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 155 (155) : A133 - A145
  • [7] wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials
    Gastegger, M.
    Schwiedrzik, L.
    Bittermann, M.
    Berzsenyi, F.
    Marquetand, P.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
  • [8] Present status and potential of group contribution methods for process development
    Gmehling, Juergen
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2009, 41 (06) : 731 - 747
  • [9] Solid-Liquid-Gas Equilibrium of the Ternaries Ibuprofen plus Myristic Acid + CO2 and Ibuprofen plus Tripalmitin + CO2
    Hong, Jindui
    Hua, Dan
    Wang, Xia
    Wang, Hongtao
    Li, Jun
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (01) : 297 - 302
  • [10] COSMOfrag:: A novel tool for high-throughput ADME property prediction and similarity screening based on quantum chemistry
    Hornig, M
    Klamt, A
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (05) : 1169 - 1177