Graver basis and proximity techniques for block-structured separable convex integer minimization problems

被引:12
|
作者
Hemmecke, Raymond [1 ]
Koeppe, Matthias [2 ]
Weismantel, Robert [3 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] ETH, Inst Operat Res, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
N-fold integer programs; Graver basis; Augmentation algorithm; Proximity; Polynomial-time algorithm; Stochastic multi-commodity flow; Stochastic integer programming; TEST SETS; OPTIMIZATION; DECOMPOSITION; PROGRAMS;
D O I
10.1007/s10107-013-0638-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider -fold -block decomposable integer programs, which simultaneously generalize -fold integer programs and two-stage stochastic integer programs with scenarios. In previous work (Hemmecke et al. in Integer programming and combinatorial optimization. Springer, Berlin, 2010), it was proved that for fixed blocks but variable , these integer programs are polynomial-time solvable for any linear objective. We extend this result to the minimization of separable convex objective functions. Our algorithm combines Graver basis techniques with a proximity result (Hochbaum and Shanthikumar in J. ACM 37:843-862,1990), which allows us to use convex continuous optimization as a subroutine.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条
  • [1] Graver basis and proximity techniques for block-structured separable convex integer minimization problems
    Raymond Hemmecke
    Matthias Köppe
    Robert Weismantel
    Mathematical Programming, 2014, 145 : 1 - 18
  • [2] FPT algorithms for a special block-structured integer program with applications in scheduling
    Chen, Hua
    Chen, Lin
    Zhang, Guochuan
    MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 463 - 496
  • [3] Vector and matrix apportionment problems and separable convex integer optimization
    N. Gaffke
    F. Pukelsheim
    Mathematical Methods of Operations Research, 2008, 67 : 133 - 159
  • [4] Vector and matrix apportionment problems and separable convex integer optimization
    Gaffke, N.
    Pukelsheim, F.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (01) : 133 - 159
  • [5] Block-structured integer programming: Can we parameterize without the largest coefficient?
    Chen, Hua
    Chen, Lin
    Zhang, Guochuan
    DISCRETE OPTIMIZATION, 2022, 46
  • [6] Two-Step Fixed-Point Proximity Algorithms for Multi-block Separable Convex Problems
    Li, Qia
    Xu, Yuesheng
    Zhang, Na
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1204 - 1228
  • [7] A hyperbolic penalty method to solve structured convex minimization problems
    Hamdi, Abdelouahed
    Al-Maadeed, Temadher K.
    Taati, Akram
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2020, 7 (05): : 87 - 97
  • [8] A primal-dual dynamical approach to structured convex minimization problems
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Laszlo, Szilard Csaba
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10717 - 10757
  • [9] Truncated nonsmooth Newton multigrid methods for block-separable minimization problems
    Graeser, Carsten
    Sander, Oliver
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 454 - 481
  • [10] Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems
    He, Bingsheng
    Ma, Feng
    Yuan, Xiaoming
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) : 1188 - 1216