The dynamics of a nanosecond gas discharge development with an extended slot cathode in argon

被引:4
作者
Ashurbekov, N. A. [1 ]
Iminov, K. O. [1 ]
Shakhsinov, G. S. [1 ]
Zakaryaeva, M. Z. [1 ,2 ]
Rabadanov, K. M. [1 ]
机构
[1] Dagestan State Univ, Fac Phys, Makhachkala 367000, Russia
[2] RAS, DFRC, Inst Phys, Makhachkala 367015, Russia
基金
俄罗斯基础研究基金会;
关键词
nanosecond gas discharge; numerical simulation; argon; excited atoms; HIGH-ENERGY ELECTRONS; PLASMA; BEAM; PARAMETERS;
D O I
10.1088/2058-6272/abbb78
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The article presents the results of an experimental study and numerical modelling for the formation and development dynamics of a high-voltage transverse nanosecond discharge generated by a slot cathode in an argon medium at a pressure range of 1-10 Torr. Numerical modelling was carried out under similar experimental conditions for the processes of formation and propagation of ionisation waves, electron density distribution, excited atom and average electron energy in the discharge gap, including the cavity inside the cathode. At a pressure ofp = 1 Torr, a classical version of a high-voltage discharge is demonstrated to take place with no penetration of the plasma into the cathode cavity and no observed hollow cathode effect. An increase in gas pressure to 5 Torr leads to a penetration of plasma into the cathode cavity with the formation of a cathodic potential drop (CPD) region. Electrons emitted from the side surfaces of the cavity pass through the CPD region without collisions, oscillate inside the cathode cavity; the hollow cathode effect is fully manifested. Atp = 10 Torr, the modelling results qualitatively coincide with the results atp = 5 Torr; in this case, however, hardly any accelerated electrons are observed in the gap between the electrodes, due to their energetic relaxation both inside the cathode cavity and when exiting from it. In both cases, the plasma structure formed at the exit of the cathode cavity involves a concentration of charged particles an order of magnitude higher than that in the rest of the gap, leading to a self-limiting discharge current effect. The results of the numerical modelling are in good agreement with experimental data.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Modeling of low pressure plasma sources for microelectronics fabrication [J].
Agarwal, Ankur ;
Bera, Kallol ;
Kenney, Jason ;
Likhanskii, Alexandre ;
Rauf, Shahid .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (42)
[2]   On the role of high-energy electrons in the formation of a plasma-beam discharge structure in a diode with a slit cathode [J].
Ashurbekov, N. A. ;
Iminov, K. O. ;
Kobzeva, V. S. ;
Kobzev, O. V. .
TECHNICAL PHYSICS LETTERS, 2007, 33 (06) :517-520
[3]   The dynamics of ionization waves formation in a transverse nanosecond plasma-beam discharge with a slotted cathode in argon [J].
Ashurbekov, N. A. ;
Iminov, K. O. ;
Zakaryaeva, M. Z. ;
Ramazanov, A. R. ;
Shakhsinov, G. Sh .
14TH INTERNATIONAL CONFERENCE GAS DISCHARGE PLASMAS AND THEIR APPLICATIONS, 2019, 1393
[4]   Low-energy ions source of plane geometry on the basis of plasma-beam discharge with a slot cathode [J].
Ashurbekov, N. A. ;
Iminov, K. O. ;
Shakhsinov, G. S. ;
Ramazanov, A. R. .
6TH INTERNATIONAL CONGRESS ENERGY FLUXES AND RADIATION EFFECTS, 2018, 1115
[5]   Current self-limitation in a transverse nanosecond discharge with a slotted cathode [J].
Ashurbekov, N. A. ;
Iminov, K. O. ;
Popov, O. A. ;
Shakhsinov, G. S. .
PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (03)
[6]   Generation of high-energy electrons in a transverse slot-cathode nanosecond discharge at working gas medium pressures [J].
Ashurbekov, N. A. ;
Iminov, K. O. ;
Kobzev, O. V. ;
Kobzeva, V. S. .
TECHNICAL PHYSICS, 2010, 55 (08) :1138-1144
[7]  
Ashurbekov N A, 2016, GENERATION RUNAWAY E, V1, P405
[8]   Etching with atomic precision by using low electron temperature plasma [J].
Dorf, L. ;
Wang, J-C ;
Rauf, S. ;
Monroy, G. A. ;
Zhang, Y. ;
Agarwal, A. ;
Kenney, J. ;
Ramaswamy, K. ;
Collins, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (27)
[9]   Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition? [J].
Faraz, T. ;
Roozeboom, F. ;
Knoops, H. C. M. ;
Kessels, W. M. M. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (06) :N5023-N5032
[10]  
Grigorev I. S., 1991, FIZICHESKIE VELICHIN, P1232