Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

被引:117
作者
Siegert, Michael [1 ]
Yates, Matthew D. [1 ]
Call, Douglas F. [1 ,2 ]
Zhu, Xiuping [1 ]
Spormann, Alfred [3 ,4 ]
Logan, Bruce E. [1 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA
[3] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
Biocathode; Carbon capturing and sequestration; Microbial electrolysis cell; Power-to-gas; Microbially influenced corrosion; Carbon black; Graphite; Polyaciylonitrile; MICROBIAL ELECTROLYSIS CELLS; SULFATE-REDUCING BACTERIA; ELECTROCHEMICAL CONVERSION; AROMATIC-HYDROCARBONS; HYDROGEN EVOLUTION; CARBON-DIOXIDE; IRON; CO2; REDUCTION; CORROSION;
D O I
10.1021/sc400520x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 +/- 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 +/- 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.
引用
收藏
页码:910 / 917
页数:8
相关论文
共 36 条
[1]   Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells [J].
Batlle-Vilanova, Pau ;
Puig, Sebastia ;
Gonzalez-Olmos, Rafael ;
Vilajeliu-Pons, Anna ;
Baneras, Lluis ;
Dolors Balaguer, M. ;
Colprim, Jesus .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (03) :1297-1305
[2]   Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons [J].
Berdugo-Clavijo, Carolina ;
Dong, Xiaoli ;
Soh, Jung ;
Sensen, Christoph W. ;
Gieg, Lisa M. .
FEMS MICROBIOLOGY ECOLOGY, 2012, 81 (01) :124-133
[3]   High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells [J].
Call, Douglas F. ;
Merrill, Matthew D. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (06) :2179-2183
[4]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[5]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958
[6]   Iron corrosion by novel anaerobic microorganisms [J].
Dinh, HT ;
Kuever, J ;
Mussmann, M ;
Hassel, AW ;
Stratmann, M ;
Widdel, F .
NATURE, 2004, 427 (6977) :829-832
[7]   Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J].
Enning, Dennis ;
Venzlaff, Hendrik ;
Garrelfs, Julia ;
Dinh, Hang T. ;
Meyer, Volker ;
Mayrhofer, Karl ;
Hassel, Achim W. ;
Stratmann, Martin ;
Widdel, Friedrich .
ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (07) :1772-1787
[8]   Identification of new microbial mediators for electromethanogenic reduction of geologically-stored carbon dioxide [J].
Fu, Qian ;
Kobayashi, Hajime ;
Kawaguchi, Hideo ;
Vilcaez, Javier ;
Sato, Kozo .
GHGT-11, 2013, 37 :7006-7013
[9]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[10]   Syntrophic biodegradation of hydrocarbon contaminants [J].
Gieg, Lisa M. ;
Fowler, S. Jane ;
Berdugo-Clavijo, Carolina .
CURRENT OPINION IN BIOTECHNOLOGY, 2014, 27 :21-29