Calibration of Forcefields for Molecular Simulation: Sequential Design of Computer Experiments for Building Cost-Efficient Kriging Metamodels

被引:21
作者
Cailliez, Fabien [1 ,2 ]
Bourasseau, Arnaud [1 ]
Pernot, Pascal [1 ,2 ]
机构
[1] Univ Paris 11, Chim Phys Lab, UMR8000, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
关键词
molecular simulation; forcefield calibration; kriging; efficient global optimization; uncertainty quantification; FORCE-FIELD PARAMETERS; GLOBAL OPTIMIZATION; UNCERTAINTY QUANTIFICATION; SENSITIVITY-ANALYSIS; LIQUID WATER; MODEL; DYNAMICS; POTENTIALS; PREDICTION; SYSTEMS;
D O I
10.1002/jcc.23475
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a global strategy for molecular simulation forcefield optimization, using recent advances in Efficient Global Optimization algorithms. During the course of the optimization process, probabilistic kriging metamodels are used, that predict molecular simulation results for a given set of forcefield parameter values. This enables a thorough investigation of parameter space, and a global search for the minimum of a score function by properly integrating relevant uncertainty sources. Additional information about the forcefield parameters are obtained that are inaccessible with standard optimization strategies. In particular, uncertainty on the optimal forcefield parameters can be estimated, and transferred to simulation predictions. This global optimization strategy is benchmarked on the TIP4P water model. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:130 / 149
页数:20
相关论文
共 51 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511 [J].
Abascal, JLF ;
Sanz, E ;
Fernández, RG ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (23)
[3]  
Allen M. P., 1987, COMPUTER SIMULATION
[4]   Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework [J].
Angelikopoulos, Panagiotis ;
Papadimitriou, Costas ;
Koumoutsakos, Petros .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (14)
[5]   Stochastic Kriging for Simulation Metamodeling [J].
Ankenman, Bruce ;
Nelson, Barry L. ;
Staum, Jeremy .
OPERATIONS RESEARCH, 2010, 58 (02) :371-382
[6]  
[Anonymous], 2011, J STAT SOFTWARE
[7]  
[Anonymous], 2003, QUAL ENG
[8]  
[Anonymous], 2021, Bayesian data analysis
[9]  
[Anonymous], 2005, Bayesian logical data analysis for the physical sciences: a comparative approach with mathematica support
[10]  
[Anonymous], 1995, Markov Chain Monte Carlo in Practice