Arithmetic Properties of 5-Tuple Partitions with 3-Cores

被引:0
作者
Wen, Xin-Qi [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Congruence; k-tuple; t-core; Ramanujan's theta function; INFINITE FAMILIES; BIPARTITIONS; CONGRUENCES; IDENTITIES; TRIPLES; ANALOGS;
D O I
10.1007/s40840-022-01282-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(3,5)(n) denote the number of 5-tuple partitions of n with 3-cores. We establish some congruences modulo 2, 4, 5, 8 and 10 for A3,5(n) by employing q-series identities. For example, we prove for any prime p >= 5, alpha >= 1, beta >= 0 and n >= 0, A(3,5) (2(2 alpha+2)p(2 beta+2)n + (6 j + p) . 2(2 alpha+1) p2(beta+1) - 5/3) equivalent to 0 (mod 2), where 1 <= j <= p - 1.
引用
收藏
页码:1521 / 1543
页数:23
相关论文
共 22 条
  • [1] Infinite families of arithmetic identities and congruences for bipartitions with 3-cores
    Baruah, Nayandeep Deka
    Nath, Kallol
    [J]. JOURNAL OF NUMBER THEORY, 2015, 149 : 92 - 104
  • [2] Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations
    Baruah, Nayandeep Deka
    Ojah, Kanan Kumari
    [J]. RAMANUJAN JOURNAL, 2012, 28 (03) : 385 - 407
  • [3] Berndt B. C., 1985, RAMANUJANS NOTEBOOKS
  • [4] Formulas for partition k-tuples with t-cores
    Chern, Shane
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 841 - 852
  • [5] Arithmetic properties of l-regular partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) : 507 - 523
  • [6] Dasappa R, 2016, J INTEGER SEQ, V19
  • [7] CRANKS AND T-CORES
    GARVAN, F
    KIM, DS
    STANTON, D
    [J]. INVENTIONES MATHEMATICAE, 1990, 101 (01) : 1 - 17
  • [8] A SIMPLE PROOF OF WATSON PARTITION CONGRUENCES FOR POWERS OF 7
    GARVAN, FG
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN): : 316 - 334
  • [9] CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q)
    HIRSCHHORN, M
    GARVAN, F
    BORWEIN, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04): : 673 - 694
  • [10] Hirschhorn M.D., 2017, SPRINGER P MATH STAT, V221, P311