Molecular dynamics simulations of tension-compression asymmetry in nanocrystalline copper

被引:37
作者
Zhou, Kai [1 ]
Shao, Shaofeng [1 ]
Yao, Yijun [1 ]
机构
[1] Nanjing Univ Informat Sci Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Tension compression asymmetry; Nanocrystalline copper; Molecular dynamics simulations; GRAIN-SIZE DEPENDENCE; MECHANICAL-BEHAVIOR; METALS; STRENGTH; DISLOCATIONS; DEFORMATION; PRESSURE; ALLOY; MODEL; CU;
D O I
10.1016/j.physleta.2017.01.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8-11.9 nm. The simulation resifts show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1163 / 1168
页数:6
相关论文
共 35 条
[1]   On the failure of pressure-sensitive plastic materials .2. Comparisons with experiments on ultra fine grained Fe-10% Cu alloys [J].
Carsley, JE ;
Milligan, WW ;
Zhu, XH ;
Aifantis, EC .
SCRIPTA MATERIALIA, 1997, 36 (06) :727-732
[2]   Mechanical behavior of a bulk nanostructured iron alloy [J].
Carsley, JE ;
Fisher, A ;
Milligan, WW ;
Aifantis, EC .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1998, 29 (09) :2261-2271
[3]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[4]   Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals [J].
Cheng, S ;
Spencer, JA ;
Milligan, WW .
ACTA MATERIALIA, 2003, 51 (15) :4505-4518
[5]   Grain-size dependence of millimeters to nanometers [J].
Conrad, H .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (09) :2681-2695
[6]   Atomic-Scale Study of Plastic-Yield Criterion in Nanocrystalline Cu at High Strain Rates [J].
Dongare, A. M. ;
Rajendran, A. M. ;
Lamattina, B. ;
Brenner, D. W. ;
Zikry, M. A. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (02) :523-531
[7]   Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation [J].
Fan, GJ ;
Wang, YD ;
Fu, LF ;
Choo, H ;
Liaw, PK ;
Ren, Y ;
Browning, ND .
APPLIED PHYSICS LETTERS, 2006, 88 (17)
[8]   On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals [J].
Guerses, Ercan ;
El Sayed, Tamer .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) :639-644
[9]   The mechanical behavior of a cryomilled Al-10Ti-2Cu alloy [J].
Hayes, RW ;
Rodriguez, R ;
Lavernia, EJ .
ACTA MATERIALIA, 2001, 49 (19) :4055-4068
[10]   A composite model for the grain-size dependence of yield stress of nanograined materials [J].
B. Jiang ;
G. J. Weng .
Metallurgical and Materials Transactions A, 2003, 34 (3) :765-772