On the obstruction to linearizability of second-order ordinary differential equations

被引:4
作者
Yumaguzhin, VA [1 ]
机构
[1] M Botik, Program Syst Inst, Pereslavl Zalesskii 152020, Russia
关键词
2nd order ordinary differential equation; point transformation; equivalence problem; differential invariant; Spencer cohomology;
D O I
10.1023/B:ACAP.0000035593.51734.8e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the action of the pseudogroup of all point transformations on the bundle of equations y" = u(0)(x, y) + u(1)(x, y) y' + u(2)( x, y)( y')(2) + u(3)( x, y)( y')(3). We calculate the 1st nontrivial differential invariant of this action. It is a horizontal differential 2-form with values in some algebra, it is defined on the bundle of 2-jets of sections of the bundle under consideration. We prove that this form is a unique obstruction to linearizability of these equations by point transformations.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 8 条
[1]  
ARNOLD VI, 1978, ADV CHAPTERS THEORY
[2]  
Bernstein, 1973, USP MAT NAUK, V28, P103
[3]  
Cartan E., 1924, Bulletin de la Societe Mathematique de France, V52, P205, DOI [10.24033/bsmf.1053, DOI 10.24033/BSMF.1053]
[4]   ALGEBRAIC MODEL OF TRANSITIVE DIFFERENTIAL GEOMETRY [J].
GUILLEMIN, VW ;
STERNBERG, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (01) :16-&
[5]  
GUSYATNIKOVA VN, 1991, MAT ZAMETKI, V49, P146
[6]  
KRASILSHCHIK IS, 1999, TRANSL MATH MONOGRAP, V182
[7]  
KURANISHI M, 1967, LECT INVOLUTIVE SYST
[8]  
Sternberg S., 1964, Lectures on Differential Geometry