Smoothing Homotopy Method for Solving Second-Order Cone Complementarity Problem

被引:1
作者
Fan, Xiaona [1 ]
Zeng, Min [1 ]
Jiang, Li [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
关键词
Second order cone complementarity problem; homotopy method; smoothing method; global convergence; NEWTON METHOD;
D O I
10.1142/S0217595920500232
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, based on Chen-Harker-Kanzow-Smale smooth function, we obtain a smoothing homotopy method to solve the second-order cone complementarity problem. The global convergence is ensured under certain non-monotonicity condition for the defined mapping F. The numerical results illustrate that this method is feasible.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Solving the nonlinear complementarity problem via an aggregate homotopy method
    Fan, Xiaona
    Yan, Qinglun
    Li, Junxiang
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 43 (02) : 93 - 100
  • [42] A Combined Homotopy Method for Solving Horizontal Linear Complementarity Problem
    Xu, Junyan
    Miao, Zhuang
    Tan, Jiawei
    Liu, Qinghuai
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 235 - 239
  • [43] A new one-step smoothing Newton method for second-order cone programming
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    APPLICATIONS OF MATHEMATICS, 2012, 57 (04) : 311 - 331
  • [44] A new one-step smoothing Newton method for second-order cone programming
    Jingyong Tang
    Guoping He
    Li Dong
    Liang Fang
    Applications of Mathematics, 2012, 57 : 311 - 331
  • [45] Sub-quadratic convergence of a smoothing Newton method for second-order cone programming
    Chi X.
    Liu S.
    Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 489 - 502
  • [46] A new smoothing Newton-type method for second-order cone programming problems
    Fang, Liang
    He, Guoping
    Hu, Yunhong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1020 - 1029
  • [47] A REGULARIZED INEXACT SMOOTHING NEWTON METHOD FOR CIRCULAR CONE COMPLEMENTARITY PROBLEM
    Chi, Xiaoni
    Tao, Jiyuan
    Zhu, Zhibin
    Duan, Fujian
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 197 - 218
  • [48] A Nonmonotone Smoothing Algorithm for Second-Order Cone Programming in Failure Criteria
    Chi, XiaoNi
    Chen, WenLue
    ADVANCES IN COMPUTER SCIENCE, INTELLIGENT SYSTEM AND ENVIRONMENT, VOL 1, 2011, 104 : 179 - 184
  • [49] Solving system of inequalities via a smoothing homotopy method
    Xiaona Fan
    Qinglun Yan
    Numerical Algorithms, 2019, 82 : 719 - 728
  • [50] REGULARIZED PARALLEL MATRIX-SPLITTING METHOD FOR SYMMETRIC LINEAR SECOND-ORDER CONE COMPLEMENTARITY PROBLEMS
    Wang, Guoxin
    Lin, Gui-Hua
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (04): : 565 - 575