Smoothing Homotopy Method for Solving Second-Order Cone Complementarity Problem

被引:1
作者
Fan, Xiaona [1 ]
Zeng, Min [1 ]
Jiang, Li [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
关键词
Second order cone complementarity problem; homotopy method; smoothing method; global convergence; NEWTON METHOD;
D O I
10.1142/S0217595920500232
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, based on Chen-Harker-Kanzow-Smale smooth function, we obtain a smoothing homotopy method to solve the second-order cone complementarity problem. The global convergence is ensured under certain non-monotonicity condition for the defined mapping F. The numerical results illustrate that this method is feasible.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A regularization method for the second-order cone complementarity problem with the Cartesian P0-property
    Pan, Shaohua
    Chen, Jein-Shan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (04) : 1475 - 1491
  • [32] A smoothing Newton method for second-order cone optimization based on a new smoothing function
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1317 - 1329
  • [33] A smoothing homotopy method for solving variational inequalities
    Fan, Xiaona
    Yu, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 211 - 219
  • [34] A homotopy method for solving the horizontal linear complementarity problem
    Wang, Xiuyu
    Jiang, Xingwu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (01) : 1 - 11
  • [35] A homotopy method for solving the horizontal linear complementarity problem
    Xiuyu Wang
    Xingwu Jiang
    Computational and Applied Mathematics, 2014, 33 : 1 - 11
  • [36] A New Proof for Global Convergence of a Smoothing Homotopy Method for the Nonlinear Complementarity Problem
    Fan, Xiaona
    Yan, Qinglun
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2018, 35 (04)
  • [37] THE JACOBIAN CONSISTENCY OF A SMOOTHED GENERALIZED FISCHER-BURMEISTER FUNCTION FOR THE SECOND-ORDER CONE COMPLEMENTARITY PROBLEM
    Chi, Xiaoni
    Wan, Zhongping
    Zhu, Zhibin
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (01): : 3 - 27
  • [38] A globally convergent smoothing Newton method for the second order cone complementarity approach of elastoplasticity problems
    Jin, Yimin
    Li, Zhizhi
    Zhang, Huai
    Shi, Yaolin
    COMPUTERS AND GEOTECHNICS, 2023, 156
  • [39] A new smoothing method for solving nonlinear complementarity problems
    Zhu, Jianguang
    Hao, Binbin
    OPEN MATHEMATICS, 2019, 17 : 104 - 119
  • [40] ROBUST NASH EQUILIBRIA AND SECOND-ORDER CONE COMPLEMENTARITY PROBLEMS
    Hayashi, Shunsuke
    Yamashita, Nobuo
    Fukushima, Masao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2005, 6 (02) : 283 - 296