Smoothing Homotopy Method for Solving Second-Order Cone Complementarity Problem

被引:1
作者
Fan, Xiaona [1 ]
Zeng, Min [1 ]
Jiang, Li [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
关键词
Second order cone complementarity problem; homotopy method; smoothing method; global convergence; NEWTON METHOD;
D O I
10.1142/S0217595920500232
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, based on Chen-Harker-Kanzow-Smale smooth function, we obtain a smoothing homotopy method to solve the second-order cone complementarity problem. The global convergence is ensured under certain non-monotonicity condition for the defined mapping F. The numerical results illustrate that this method is feasible.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Numerical study of a smoothing algorithm for the complementarity system over the second-order cone
    Dong, Li
    Tang, Jingyong
    Song, Xinyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 2845 - 2861
  • [22] New convergence analysis of a class of smoothing Newton-type methods for second-order cone complementarity problem
    Dong, Li
    Tang, Jingyong
    AIMS MATHEMATICS, 2022, 7 (09): : 17612 - 17627
  • [23] Aggregate Homotopy Method for Solving the Nonlinear Complementarity Problem
    Fan, Xiaona
    Yan, Qinglun
    INFORMATION COMPUTING AND APPLICATIONS, 2010, 6377 : 439 - 446
  • [24] A globally and quadratically convergent smoothing Newton method for solving second-order cone optimization
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (08) : 2180 - 2193
  • [25] A new model for solving stochastic second-order cone complementarity problem and its convergence analysis
    Luo, Meiju
    Zhang, Caihua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [26] A new model for solving stochastic second-order cone complementarity problem and its convergence analysis
    Meiju Luo
    Caihua Zhang
    Journal of Inequalities and Applications, 2018
  • [27] Numerical study of a smoothing algorithm for the complementarity system over the second-order cone
    Li Dong
    Jingyong Tang
    Xinyu Song
    Computational and Applied Mathematics, 2018, 37 : 2845 - 2861
  • [28] A least-square semismooth Newton method for the second-order cone complementarity problem
    Pan, Shaohua
    Chen, Jein-Shan
    OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (01) : 1 - 22
  • [29] A Globally Convergent Smoothing Method for Second-Order Cone Programming
    Chi, Xiaoni
    Liu, Sanyang
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 20 - 25
  • [30] A linearly convergent derivative-free descent method for the second-order cone complementarity problem
    Pan, Shaohua
    Chen, Jein-Shan
    OPTIMIZATION, 2010, 59 (08) : 1173 - 1197