On the finite-volume approximation of regular solutions of the p-Laplacian

被引:10
作者
Andreianov, Boris
Boyer, Franck
Hubert, Florence
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Lab Anal Topol & Probabil, F-13453 Marseille 13, France
关键词
finite-volume methods; p-Laplacian; error estimates; superconvergence;
D O I
10.1093/imanum/dri047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider finite-volume schemes on rectangular meshes for the p-Laplacian with Dirichlet boundary conditions. In Andreianov et al. (2004a, Math. Model. Numer. Anal., 38, 931-959), we constructed a family of schemes and proved discrete W-1,W- p error estimates in the case of W-2,W- p solutions of the homogeneous problem. Here we improve these estimates in the case of W-4,W- 1 solutions on uniform meshes for p > 3, using symmetry properties of the schemes. The proof also works for the Laplace equation, giving O(R-2) convergence for a family of nine-point finite-volume schemes. With the same ideas, using the improved coercivity inequalities of Barrett and Liu, we obtain even better W-1,W- p, W-1,W- 1 and L-infinity convergence rates for special classes of regular solutions to the inhomogeneous problem-in particular, for solutions without critical points in (Omega) over bar, for all p is an element of (1, infinity). Numerical examples are given. They suggest the optimality of the L-infinity estimates, of order h(2), obtained for solutions without critical points.
引用
收藏
页码:472 / 502
页数:31
相关论文
共 14 条
[1]   Approximation theory for the hp-version finite element method and application to the non-linear Laplacian [J].
Ainsworth, M ;
Kay, D .
APPLIED NUMERICAL MATHEMATICS, 2000, 34 (04) :329-344
[2]   Besov regularity and new error estimates for finite volume approximations of the p-laplacian [J].
Andreianov, B ;
Boyer, F ;
Hubert, F .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :565-592
[3]   Finite volume schemes for the p-Laplacian on cartesian meshes [J].
Andreianov, B ;
Boyer, F ;
Hubert, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (06) :931-959
[4]  
Andreianov BA, 2004, SIAM J NUMER ANAL, V42, P228, DOI [10.1137/S0036142901400006, 10.1137/S00361429014000062]
[5]  
[Anonymous], 1975, REV FRANCAISE DAUT I
[6]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[8]   Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations [J].
Coudière, Y ;
Gallouët, T ;
Herbin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :767-778
[9]  
Ebmeyer C, 2005, Z ANAL ANWEND, V24, P353
[10]   Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems [J].
Ebmeyer, C ;
Liu, WB .
NUMERISCHE MATHEMATIK, 2005, 100 (02) :233-258