Equivalent low-order model for a nonlinear diffusion equation

被引:19
作者
Farjas, J
Rosell, JI
Herrero, R
Pons, R
Pi, F
Orriols, G
机构
[1] UNIV AUTONOMA BARCELONA,DEPT FIS,E-08193 BELLATERRA,SPAIN
[2] UNIV LLEIDA,DEPT MED AMBIENT & CIENCIES SOL,E-25006 LLEIDA,SPAIN
来源
PHYSICA D | 1996年 / 95卷 / 02期
关键词
nonlinear partial differential equations; dynamical systems;
D O I
10.1016/0167-2789(96)00068-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an equivalent low-order model for a simple PDE system that exhibits interesting low-dimensional dynamics with a rich variety of homoclinic Phenomena and whose effective dimension may be gradually increased by means of system parameters. The system is a linear heat equation subject to a nonlinear and nonlocal boundary condition and the reduction procedure is based on a finite element method. We will show that both the PDE and ODE systems have indentical stationary solution with a very similar linear stability behaviour and exhibit also very similar dynamics, at least within parameter ranges corresponding to physical devices.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 26 条
[1]  
ARGOUL F, 1987, J CHIM PHYS PCB, V84, P1367
[2]   OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :171-182
[3]   CHAOS IN A FINITE MACROSCOPIC SYSTEM [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA .
PHYSICS LETTERS A, 1982, 92 (08) :369-373
[4]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[5]  
BARNETT S, 1985, INTRO MATH CONTROL T, P84
[6]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI, P64
[7]  
CELIA MA, 1992, NUMERICAL METHODS DI
[8]  
Constantin P., 1989, INTEGRAL MANIFOLDS I
[9]   TRANSITION TO STOCHASTICITY FOR A CLASS OF FORCED OSCILLATORS [J].
COULLET, P ;
TRESSER, C ;
ARNEODO, A .
PHYSICS LETTERS A, 1979, 72 (4-5) :268-270
[10]  
Flytzani-Stephanopoulos M., 1980, THEORY OSCILLATORS, V64, P346