3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries using X-Ray Computed Tomography

被引:52
作者
Hao, Shuai [1 ,2 ,3 ]
Bailey, Josh J. [1 ,2 ,3 ]
Iacoviello, Francesco [1 ]
Bu, Junfu [2 ,4 ]
Grant, Patrick S. [2 ,4 ]
Brett, Dan J. L. [1 ,2 ]
Shearing, Paul R. [1 ,2 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[2] Faraday Inst, Quad One,Harwell Sci & Innovat Campus, Didcot OX11 0RA, Oxon, England
[3] RAL, Res Complex Harwell, Didcot OX11 0FA, Oxon, England
[4] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
crack; lithium protrusions; morphology; solid‐ state batteries; X‐ ray computed tomography; DENDRITE FORMATION; CURRENT-DENSITY; ELECTROLYTE; METAL; LI7LA3ZR2O12; PROPAGATION; DEPOSITION; GROWTH; KINETICS; FRACTURE;
D O I
10.1002/adfm.202007564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium batteries will revolutionize the lithium-ion battery and energy storage applications if certain key challenges can be resolved. The formation of lithium-protrusions (dendrites) that can cause catastrophic short-circuiting is one of the main obstacles, and progresses by a mechanism that is not yet fully understood. By utilizing X-ray computed tomography with nanoscale resolution, the 3D morphology of lithium protrusions inside short-circuited solid electrolytes has been obtained for the first time. Distinguishable from adjacent voids, lithium protrusions partially filled cracks that tended to propagate intergranularly through the solid electrolyte, forming a large waved plane in the shape of the grain boundaries. Occasionally, the lithium protrusions bifurcate into flat planes in a transgranular mode. Within the cracks themselves, lithium protrusions are preferentially located in regions of relatively low curvature. The crack volume filled with lithium in two samples is 82.0% and 83.1%, even though they have distinctly different relative densities. Pre-existing pores in the solid electrolyte, as a consequence of fabrication, can also be part-filled with lithium, but do not have a significant influence on the crack path. The crack/lithium-protrusion behavior qualitatively supports a model of propagation combining electrochemical and mechanical effects.
引用
收藏
页数:9
相关论文
共 38 条
[21]   7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries [J].
Marbella, Lauren E. ;
Zekoll, Stefanie ;
Kasemchainan, Jitti ;
Emge, Steffen P. ;
Bruce, Peter G. ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2762-2769
[22]   The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces [J].
Monroe, C ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A396-A404
[23]   In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte [J].
Nagao, Motohiro ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro ;
Kanetsuku, Tsukasa ;
Tsuda, Tetsuya ;
Kuwabata, Susumu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (42) :18600-18606
[24]   Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes [J].
Pesci, Federico M. ;
Brugge, Rowena H. ;
Hekselman, A. K. Ola ;
Cavallaro, Andrea ;
Chater, Richard J. ;
Aguadero, Ainara .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19817-19827
[25]   Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes [J].
Porz, Lukas ;
Swamy, Tushar ;
Sheldon, Brian W. ;
Rettenwander, Daniel ;
Froemling, Till ;
Thaman, Henry L. ;
Berendts, Stefan ;
Uecker, Reinhard ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[26]   Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries [J].
Raj, R. ;
Wolfenstine, J. .
JOURNAL OF POWER SOURCES, 2017, 343 :119-126
[27]   Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to "Short Circuit" by Li Metal Anodes [J].
Ren, Yaoyu ;
Shen, Yang ;
Lin, Yuanhua ;
Nan, Ce-Wen .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (06) :5928-5937
[28]   Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte [J].
Ren, Yaoyu ;
Shen, Yang ;
Lin, Yuanhua ;
Nan, Ce-Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 57 :27-30
[29]   Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li3PS4 Ceramic Electrolyte [J].
Seitzman, Natalie ;
Guthrey, Harvey ;
Sulas, Dana B. ;
Platt, Heather A. S. ;
Al-Jassim, Mowafak ;
Pylypenko, Svitlana .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) :A3732-A3737
[30]   Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density [J].
Sharafi, Asma ;
Meyer, Harry M. ;
Nanda, Jagjit ;
Wolfenstine, Jeff ;
Sakamoto, Jeff .
JOURNAL OF POWER SOURCES, 2016, 302 :135-139