3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries using X-Ray Computed Tomography

被引:52
作者
Hao, Shuai [1 ,2 ,3 ]
Bailey, Josh J. [1 ,2 ,3 ]
Iacoviello, Francesco [1 ]
Bu, Junfu [2 ,4 ]
Grant, Patrick S. [2 ,4 ]
Brett, Dan J. L. [1 ,2 ]
Shearing, Paul R. [1 ,2 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[2] Faraday Inst, Quad One,Harwell Sci & Innovat Campus, Didcot OX11 0RA, Oxon, England
[3] RAL, Res Complex Harwell, Didcot OX11 0FA, Oxon, England
[4] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
crack; lithium protrusions; morphology; solid‐ state batteries; X‐ ray computed tomography; DENDRITE FORMATION; CURRENT-DENSITY; ELECTROLYTE; METAL; LI7LA3ZR2O12; PROPAGATION; DEPOSITION; GROWTH; KINETICS; FRACTURE;
D O I
10.1002/adfm.202007564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium batteries will revolutionize the lithium-ion battery and energy storage applications if certain key challenges can be resolved. The formation of lithium-protrusions (dendrites) that can cause catastrophic short-circuiting is one of the main obstacles, and progresses by a mechanism that is not yet fully understood. By utilizing X-ray computed tomography with nanoscale resolution, the 3D morphology of lithium protrusions inside short-circuited solid electrolytes has been obtained for the first time. Distinguishable from adjacent voids, lithium protrusions partially filled cracks that tended to propagate intergranularly through the solid electrolyte, forming a large waved plane in the shape of the grain boundaries. Occasionally, the lithium protrusions bifurcate into flat planes in a transgranular mode. Within the cracks themselves, lithium protrusions are preferentially located in regions of relatively low curvature. The crack volume filled with lithium in two samples is 82.0% and 83.1%, even though they have distinctly different relative densities. Pre-existing pores in the solid electrolyte, as a consequence of fabrication, can also be part-filled with lithium, but do not have a significant influence on the crack path. The crack/lithium-protrusion behavior qualitatively supports a model of propagation combining electrochemical and mechanical effects.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[2]   Laser-preparation of geometrically optimised samples for X-ray nano-CT [J].
Bailey, J. J. ;
Heenan, T. M. M. ;
Finegan, D. P. ;
Lu, X. ;
Daemi, S. R. ;
Iacoviello, F. ;
Backeberg, N. R. ;
Taiwo, O. O. ;
Brett, D. J. L. ;
Atkinson, A. ;
Shearing, P. R. .
JOURNAL OF MICROSCOPY, 2017, 267 (03) :384-396
[3]   Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries [J].
Barai, Pallab ;
Higa, Kenneth ;
Ngo, Anh T. ;
Curtiss, Larry A. ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) :A1752-A1762
[4]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[5]   Live scanning electron microscope observations of dendritic growth in lithium/polymer cells [J].
Dollé, M ;
Sannier, L ;
Beaudoin, B ;
Trentin, M ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A286-A289
[6]   Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers [J].
Duan, Hui ;
Yin, Ya-Xia ;
Shi, Yang ;
Wang, Peng-Fei ;
Zhang, Xu-Dong ;
Yang, Chun-Peng ;
Shi, Ji-Lei ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :82-85
[7]   Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging [J].
Eastwood, David S. ;
Bayley, Paul M. ;
Chang, Hee Jung ;
Taiwo, Oluwadamilola O. ;
Vila-Comamala, Joan ;
Brett, Daniel J. L. ;
Rau, Christoph ;
Withers, Philip J. ;
Shearing, Paul R. ;
Grey, Clare P. ;
Lee, Peter D. .
CHEMICAL COMMUNICATIONS, 2015, 51 (02) :266-268
[8]   In Situ Scanning Electron Microscopy Detection of Carbide Nature of Dendrites in Li-Polymer Batteries [J].
Golozar, Maryam ;
Hovington, Pierre ;
Paolella, Andrea ;
Bessette, Stephanie ;
Lagace, Marin ;
Bouchard, Patrick ;
Demers, Hendrix ;
Gauvin, Raynald ;
Zaghib, Karim .
NANO LETTERS, 2018, 18 (12) :7583-7589
[9]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[10]   Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode [J].
Harry, Katherine J. ;
Higa, Kenneth ;
Srinivasan, Venkat ;
Balsara, Nitash P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (10) :A2216-A2224