Greening Ammonia toward the Solar Ammonia Refinery

被引:830
作者
Wang, Lu [1 ]
Xia, Meikun [1 ]
Wang, Hong [2 ]
Huang, Kefeng [3 ]
Qian, Chenxi [1 ]
Maravelias, Christos T. [3 ]
Ozin, Geoffrey A. [1 ]
机构
[1] Univ Toronto, Chem Dept, Solar Fuels Grp, Toronto, ON M5S 3H6, Canada
[2] Nankai Univ, Inst Polymer Chem, Key Lab Funct Polymer Mat, Minist Educ, Tianjin 300071, Peoples R China
[3] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
基金
加拿大自然科学与工程研究理事会;
关键词
AMBIENT CONDITIONS; ELECTROCHEMICAL REDUCTION; ATMOSPHERIC-PRESSURE; VISIBLE-LIGHT; MOLTEN-SALTS; NITROGEN; WATER; DINITROGEN; N-2; ELECTROLYTE;
D O I
10.1016/j.joule.2018.04.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In light of the targets set out by the Paris Climate Agreement and the global energy sector's ongoing transition from fossil fuels to renewables, the chemical industry is searching for innovative ways of reducing greenhouse gas emissions associated with the production of ammonia. To address this need, research and development is under way around the world to replace the century-old Haber-Bosch process for manufacturing ammonia from N-2 and H-2, powered by renewable electricity. This involves replacing H-2 obtained from steam-reformed CH4 to H-2 that is instead obtained from electrolyzed H2O. This transition will enable the changeover from the Haber-Bosch production of NH3 to electrochemical, plasma chemical, thermochemical, and photochemical generation of NH3. If ammonia can eventually be produced directly from N-2 and H2O powered by just sunlight, at a technologically significant scale, efficiency, and cost, in a "solar ammonia refinery,'' green ammonia can change the world!
引用
收藏
页码:1055 / 1074
页数:20
相关论文
共 81 条
[21]   Ammonia production via a two-step Al2O3/AlN thermochemical cycle.: 1.: Thermodynamic, environmental, and economic analyses [J].
Galvez, M. E. ;
Halmann, M. ;
Steinfeld, A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) :2042-2046
[22]   The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2 [J].
Golabiewska, Anna ;
Malankowska, Anna ;
Jarek, Marcin ;
Lisowski, Wojciech ;
Nowaczyk, Grzegorz ;
Jurga, Stefan ;
Zaleska-Medynska, Adriana .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 196 :27-40
[23]   Ternary intermetallic LaCoSi as a catalyst for N2 activation [J].
Gong, Yutong ;
Wu, Jiazhen ;
Kitano, Masaaki ;
Wang, Junjie ;
Ye, Tian-Nan ;
Li, Jiang ;
Kobayashi, Yasukazu ;
Kishida, Kazuhisa ;
Abe, Hitoshi ;
Niwa, Yasuhiro ;
Yang, Hongsheng ;
Tada, Tomofumi ;
Hosono, Hideo .
NATURE CATALYSIS, 2018, 1 (03) :178-185
[24]   Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents [J].
Hargreaves, J. S. J. .
APPLIED PETROCHEMICAL RESEARCH, 2014, 4 (01) :3-10
[25]   Assessment of Solar-to-Fuels Strategies: Photocatalysis and Electrocatalytic Reduction [J].
Herron, Jeffrey A. ;
Maravelias, Christos T. .
ENERGY TECHNOLOGY, 2016, 4 (11) :1369-1391
[26]   A general framework for the assessment of solar fuel technologies [J].
Herron, Jeffrey A. ;
Kim, Jiyong ;
Upadhye, Aniruddha A. ;
Huber, George W. ;
Maravelias, Christos T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :126-157
[27]   Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge [J].
Hong, Jungmi ;
Aramesh, Morteza ;
Shimoni, Olga ;
Seo, Dong Han ;
Yick, Samuel ;
Greig, Amelia ;
Charles, Christine ;
Prawer, Steven ;
Murphy, Anthony B. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (04) :917-940
[28]   Ammonia synthesis from first-principles calculations [J].
Honkala, K ;
Hellman, A ;
Remediakis, IN ;
Logadottir, A ;
Carlsson, A ;
Dahl, S ;
Christensen, CH ;
Norskov, JK .
SCIENCE, 2005, 307 (5709) :555-558
[29]   Coastal nitrogen pollution: A review of sources and trends globally and regionally [J].
Howarth, Robert W. .
HARMFUL ALGAE, 2008, 8 (01) :14-20
[30]  
International Fertilizer Industry Association IFA, 2009, Fertilizers, Climate Change and Enhancing Agricultural Productivity Sustainably