Greening Ammonia toward the Solar Ammonia Refinery

被引:830
作者
Wang, Lu [1 ]
Xia, Meikun [1 ]
Wang, Hong [2 ]
Huang, Kefeng [3 ]
Qian, Chenxi [1 ]
Maravelias, Christos T. [3 ]
Ozin, Geoffrey A. [1 ]
机构
[1] Univ Toronto, Chem Dept, Solar Fuels Grp, Toronto, ON M5S 3H6, Canada
[2] Nankai Univ, Inst Polymer Chem, Key Lab Funct Polymer Mat, Minist Educ, Tianjin 300071, Peoples R China
[3] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
基金
加拿大自然科学与工程研究理事会;
关键词
AMBIENT CONDITIONS; ELECTROCHEMICAL REDUCTION; ATMOSPHERIC-PRESSURE; VISIBLE-LIGHT; MOLTEN-SALTS; NITROGEN; WATER; DINITROGEN; N-2; ELECTROLYTE;
D O I
10.1016/j.joule.2018.04.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In light of the targets set out by the Paris Climate Agreement and the global energy sector's ongoing transition from fossil fuels to renewables, the chemical industry is searching for innovative ways of reducing greenhouse gas emissions associated with the production of ammonia. To address this need, research and development is under way around the world to replace the century-old Haber-Bosch process for manufacturing ammonia from N-2 and H-2, powered by renewable electricity. This involves replacing H-2 obtained from steam-reformed CH4 to H-2 that is instead obtained from electrolyzed H2O. This transition will enable the changeover from the Haber-Bosch production of NH3 to electrochemical, plasma chemical, thermochemical, and photochemical generation of NH3. If ammonia can eventually be produced directly from N-2 and H2O powered by just sunlight, at a technologically significant scale, efficiency, and cost, in a "solar ammonia refinery,'' green ammonia can change the world!
引用
收藏
页码:1055 / 1074
页数:20
相关论文
共 81 条
[1]   The Reduction of Various Nitrides under Hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5 [J].
Alexander, A. -M. ;
Hargreaves, J. S. J. ;
Mitchell, C. .
TOPICS IN CATALYSIS, 2012, 55 (14-15) :1046-1053
[2]   Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon [J].
Ali, Muataz ;
Zhou, Fengling ;
Chen, Kun ;
Kotzur, Christopher ;
Xiao, Changlong ;
Bourgeois, Laure ;
Zhang, Xinyi ;
MacFarlane, Douglas R. .
NATURE COMMUNICATIONS, 2016, 7
[3]   Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3-δ-Ce0.8Gd0.18Ca0.02O2-δ composite cathode [J].
Amar, Ibrahim A. ;
Lan, Rong ;
Tao, Shanwen .
RSC ADVANCES, 2015, 5 (49) :38977-38983
[4]   Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode [J].
Amar, Ibrahim A. ;
Petit, Christophe T. G. ;
Zhang, Lei ;
Lan, Rong ;
Skabara, Peter J. ;
Tao, Shanwen .
SOLID STATE IONICS, 2011, 201 (01) :94-100
[5]   Solid-state electrochemical synthesis of ammonia: a review [J].
Amar, Ibrahim A. ;
Lan, Rong ;
Petit, Christophe T. G. ;
Tao, Shanwen .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (09) :1845-1860
[6]   Catalytic conversion of nitrogen to ammonia by an iron model complex [J].
Anderson, John S. ;
Rittle, Jonathan ;
Peters, Jonas C. .
NATURE, 2013, 501 (7465) :84-+
[7]   Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles [J].
Aneke, Mathew ;
Wang, Meihong .
APPLIED THERMAL ENGINEERING, 2015, 81 :223-231
[8]  
[Anonymous], 2016, Mineral Commodities Summaries 2016
[9]  
APPL M, 1994, CHEM TECH-LEIPZIG, V46, P125
[10]   Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels [J].
Banerjee, Abhishek ;
Yuhas, Benjamin D. ;
Margulies, Eric A. ;
Zhang, Yongbo ;
Shim, Yurina ;
Wasielewski, Michael R. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :2030-2034