Optimal control of bilateral obstacle problems

被引:27
作者
Bergounioux, M
Lenhart, S
机构
[1] Univ Orleans, Dept Math, UFR Sci, Lab MAPMO, F-45067 Orleans, France
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
optimal control; obstacle problem; variational inequalities; semilinear elliptic equations;
D O I
10.1137/S0363012902416912
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an optimal control problem where the state satisfies a bilateral elliptic variational inequality and the control functions are the upper and lower obstacles. We seek a state that is close to a desired pro. le and the H-2 norms of the obstacles are not too large. Existence results are given and an optimality system is derived. A particular case is studied that needs no compactness assumption, via a monotonicity method.
引用
收藏
页码:240 / 255
页数:16
相关论文
共 19 条
[1]   An obstacle control problem with a source term [J].
Adams, DR ;
Lenhart, S .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (01) :79-95
[2]   Optimal control of the obstacle for a parabolic variational inequality [J].
Adams, DR ;
Lenhart, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) :602-614
[3]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[4]  
Barbu V, 1993, Mathematics in Science and Engineering, V190
[5]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[6]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[7]   Primal-dual strategy for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (02) :193-224
[8]  
BERGOUNIOUX M, IN PRESS POSITIVITY
[9]  
Bergounioux M., 2002, J NONLINEAR CONVEX A, V3, P25
[10]   An existence result for optimal obstacles [J].
Bucur, D ;
Buttazzo, G ;
Trebeschi, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 162 (01) :96-119