Mechanism of Edge Localized Mode Mitigation by Resonant Magnetic Perturbations

被引:66
作者
Becoulet, M. [1 ]
Orain, F. [1 ]
Huijsmans, G. T. A. [2 ]
Pamela, S. [3 ]
Cahyna, P. [4 ]
Hoelzl, M. [5 ]
Garbet, X. [1 ]
Franck, E. [5 ]
Sonnendruecker, E. [5 ]
Dif-Pradalier, G. [1 ]
Passeron, C. [1 ]
Latu, G. [1 ]
Morales, J. [1 ]
Nardon, E. [1 ]
Fil, A. [1 ]
Nkonga, B. [6 ]
Ratnani, A. [6 ]
Grandgirard, V. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] ITER Org, F-13067 St Paul Les Durance, France
[3] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Acad Sci Czech Republic, Inst Plasma Phys, Prague 18200 8, Czech Republic
[5] Max Planck Inst, D-85748 Garching, Germany
[6] Univ Nice Sophia Antipolis, CNRS UNS, Lab Math JA Dieudonne, UMR 7351, F-06108 Nice 02, France
基金
英国工程与自然科学研究理事会;
关键词
Magnetohydrodynamics - Magnetic resonance - Wave plasma interactions;
D O I
10.1103/PhysRevLett.113.115001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A possible mechanism of edge localized modes (ELMs) mitigation by resonant magnetic perturbations (RMPs) is proposed based on the results of nonlinear resistive magnetohydrodynamic modeling using the JOREK code, realistic JET-like plasma parameters and an RMP spectrum of JET error-field correction coils (EFCC) with a main toroidal number n = 2 were used in the simulations. Without RMPs, a large ELM relaxation is obtained mainly due to the most unstable medium-n ballooning mode. The externally imposed RMP drives nonlinearly the modes coupled to n = 2 RMP which produce small multimode relaxations, mitigated ELMs. The modes driven by RMPs exhibit a tearinglike structure and produce additional islands. Mitigated ELMs deposit energy into the divertor mainly in the structures ("footprints") created by n = 2 RMPs, however, slightly modulated by other nonlinearly driven even harmonics. The divertor power flux during a ELM phase mitigated by RMPs is reduced almost by a factor of 10. The mechanism of ELM mitigation by RMPs proposed here reproduces generic features of high collisionality RMP experiments, where large ELMs are replaced by small, much more frequent ELMs or magnetic turbulence. Total ELM suppression was also demonstrated in modeling at higher RMP amplitude.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Screening of resonant magnetic perturbations by flows in tokamaks [J].
Becoulet, M. ;
Orain, F. ;
Maget, P. ;
Mellet, N. ;
Garbet, X. ;
Nardon, E. ;
Huysmans, G. T. A. ;
Casper, T. ;
Loarte, A. ;
Cahyna, P. ;
Smolyakov, A. ;
Waelbroeck, F. L. ;
Schaffer, M. ;
Evans, T. ;
Liang, Y. ;
Schmitz, O. ;
Beurskens, M. ;
Rozhansky, V. ;
Kaveeva, E. .
NUCLEAR FUSION, 2012, 52 (05)
[2]   Numerical study of the resonant magnetic perturbations for Type I edge localized modes control in ITER [J].
Becoulet, M. ;
Nardon, E. ;
Huysmaws, G. ;
Zwingmann, W. ;
Thomas, P. ;
Lipa, M. ;
Moyer, R. ;
Evans, T. ;
Chuyanov, V. ;
Gribov, Y. ;
Poevoi, A. ;
Vayakis, G. ;
Federici, G. ;
Saibene, G. ;
Portone, A. ;
Loarte, A. ;
Doebert, C. ;
Gimblett, C. ;
Hastie, J. ;
Parail, V. .
NUCLEAR FUSION, 2008, 48 (02)
[3]  
Biskamp D., 1993, CAMBRIDGE MONOGRAPHS, V1
[4]   ELM destabilization by externally applied non-axisymmetric magnetic perturbations in NSTX [J].
Canik, J. M. ;
Maingi, R. ;
Evans, T. E. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Manickam, J. ;
Menard, J. E. ;
Osborne, T. H. ;
Park, J. -K. ;
Paul, S. ;
Snyder, P. B. ;
Sabbagh, S. A. ;
Unterberg, E. A. .
NUCLEAR FUSION, 2010, 50 (03)
[5]   Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary [J].
Evans, TE ;
Moyer, RA ;
Thomas, PR ;
Watkins, JG ;
Osborne, TH ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Rhodes, TL ;
Reimerdes, H ;
Rudakov, DL ;
Schaffer, MJ ;
Wang, G ;
Zeng, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235003-1
[6]   Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D [J].
Fenstermacher, M. E. ;
Evans, T. E. ;
Osborne, T. H. ;
Schaffer, M. J. ;
Aldan, M. P. ;
deGrassie, J. S. ;
Gohil, P. ;
Joseph, I. ;
Moyer, R. A. ;
Snyder, P. B. ;
Groebner, R. J. ;
Jakubowski, M. ;
Leonard, A. W. ;
Schmitz, O. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[7]   Role of plasma response in displacements of the tokamak edge due to applied non-axisymmetric fields [J].
Ferraro, N. M. ;
Evans, T. E. ;
Lao, L. L. ;
Moyer, R. A. ;
Nazikian, R. ;
Orlov, D. M. ;
Shafer, M. W. ;
Unterberg, E. A. ;
Wade, M. R. ;
Wingen, A. .
NUCLEAR FUSION, 2013, 53 (07)
[8]   Principal physics developments evaluated in the ITER design review [J].
Hawryluk, R. J. ;
Campbell, D. J. ;
Janeschitz, G. ;
Thomas, P. R. ;
Albanese, R. ;
Ambrosino, R. ;
Bachmann, C. ;
Baylor, L. ;
Becoulet, M. ;
Benfatto, I. ;
Bialek, J. ;
Boozer, A. ;
Brooks, A. ;
Budny, R. ;
Casper, T. ;
Cavinato, M. ;
Cordier, J. -J. ;
Chuyanov, V. ;
Doyle, E. ;
Evans, T. ;
Federici, G. ;
Fenstermacher, M. ;
Fujieda, H. ;
G'al, K. ;
Garofalo, A. ;
Garzotti, L. ;
Gates, D. ;
Gribov, Y. ;
Heitzenroeder, P. ;
Hender, T. C. ;
Holtkamp, N. ;
Humphreys, D. ;
Hutchinson, I. ;
Ioki, K. ;
Johner, J. ;
Johnson, G. ;
Kamada, Y. ;
Kavin, A. ;
Kessel, C. ;
Khayrutdinov, R. ;
Kramer, G. ;
Kukushkin, A. ;
Lackner, K. ;
Landman, I. ;
Lang, P. ;
Liang, Y. ;
Linke, J. ;
Lipschultz, B. ;
Loarte, A. ;
Loesser, G. D. .
NUCLEAR FUSION, 2009, 49 (06)
[9]   Non-linear MHD simulation of ELM energy deposition [J].
Huijsmans, G. T. A. ;
Loarte, A. .
NUCLEAR FUSION, 2013, 53 (12)
[10]   Non-linear MHD simulations of edge localized modes (ELMs) [J].
Huysmans, G. T. A. ;
Pamela, S. ;
van der Plas, E. ;
Ramet, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)