Category O for the Schrodinger algebra

被引:36
作者
Dubsky, Brendan [1 ]
Lu, Rencai [2 ]
Mazorchuk, Volodymyr [1 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Lie algebra; Category O; Simple module; Weight module; Indecomposable module; Annihilator; SIMPLE WEIGHT MODULES; REPRESENTATIONS; FINITE; CLASSIFICATION;
D O I
10.1016/j.laa.2014.07.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study category O for the (centrally extended) Schrodinger algebra. We determine the quivers for all blocks and relations for blocks of nonzero central charge. We also describe the quiver and relations for the finite dimensional part of O. We use this to determine the center of the universal enveloping algebra and annihilators of Verma modules. Finally, we classify primitive ideals of the universal enveloping algebra which intersect the center of the centrally extended Schrodinger algebra trivially. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 50
页数:34
相关论文
共 33 条
[1]   Intertwining operator realization of non-relativistic holography [J].
Aizawa, N. ;
Dobrev, V. K. .
NUCLEAR PHYSICS B, 2010, 828 (03) :581-593
[2]  
Bernshtein I., 1976, ANAL PRILOZEN, V10, P1
[3]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[4]   Deformed preprojective algebras of generalized Dynkin type [J].
Bialkowski, Jerzy ;
Erdmann, Karin ;
Skowronski, Andrzej .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) :2625-2650
[5]   Current algebras, highest weight categories and quivers [J].
Chari, Vyjayanthi ;
Greenstein, Jacob .
ADVANCES IN MATHEMATICS, 2007, 216 (02) :811-840
[6]  
CLINE E, 1988, J REINE ANGEW MATH, V391, P85
[7]   STRUCTURE OF SOME CATEGORIES OF REPRESENTATIONS OF INFINITE-DIMENSIONAL LIE-ALGEBRAS [J].
DEODHAR, VV ;
GABBER, O ;
KAC, V .
ADVANCES IN MATHEMATICS, 1982, 45 (01) :92-116
[8]  
Dixmier J., 1996, ENVELOPING ALGEBRAS, V11
[9]  
Dobrev V. K., 1997, Reports on Mathematical Physics, V39, P201, DOI 10.1016/S0034-4877(97)88001-9
[10]   A q-Schrodinger algebra, its lowest-weight representations and generalized q-deformed heat/Schrodinger equations [J].
Dobrev, VK ;
Doebner, HD ;
Mrugalla, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18) :5909-5918