Feynman integrals and iterated integrals of modular forms

被引:85
作者
Adams, Luise [1 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
关键词
DIFFERENTIAL-EQUATIONS; TRANSCENDENTAL FUNCTIONS; ELLIPTIC POLYLOGARITHMS; MASTER INTEGRALS; DIAGRAMS; VALUES; GRAPH; EXPANSION; CURVES; SPACE;
D O I
10.4310/CNTP.2018.v12.n2.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that certain Feynman integrals can be expressed as linear combinations of iterated integrals of modular forms to all orders in the dimensional regularisation parameter E. We discuss explicitly the equal mass sunrise integral and the kite integral. For both cases we give the alphabet of letters occurring in the iterated integrals. For the sunrise integral we present a compact formula, expressing this integral to all orders in E as iterated integrals of modular forms.
引用
收藏
页码:193 / 251
页数:59
相关论文
共 126 条
[1]   Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 :33-112
[2]  
Abreu S., 2017, ARXIV170305064
[3]  
Abreu S., 2017, ARXIV170407931
[4]  
Abreu S., 2017, ARXIV170305255
[5]   Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[6]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[7]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[8]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[9]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[10]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)