A 2-parametric generalization of Sierpinski gasket graphs

被引:0
作者
Jakovac, Marko [1 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
关键词
Sierpinski graphs; Sierpinski gasket graphs; Hamiltonicity; Chromatic number; HANOI GRAPHS; METRIC PROPERTIES; TOWER; NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graphs S[n,k] are introduced as the graphs obtained from the Sierpinski graphs S(n,k) by contracting edges that lie in no complete subgraph K-k. The family S[n,k] is a generalization of a previously studied class of Sierpinski gasket graphs S-n. Several properties of graphs S[n,k] are studied in particular, hamiltonicity and chromatic number.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
[31]   On the cop number of Sierpinski-like graphs [J].
Cakmak, Nazlican ;
Akyar, Emrah .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
[32]   The Graovac-Pisanski index of Sierpinski graphs [J].
Fathalikhani, Khadijeh ;
Babai, Azam ;
Zemljic, Sara Sabrina .
DISCRETE APPLIED MATHEMATICS, 2020, 285 :30-42
[33]   A Generalization of Kneser Graphs [J].
Bobu, A., V ;
Kupriyanov, A. E. ;
Raigorodskii, A. M. .
MATHEMATICAL NOTES, 2020, 107 (3-4) :392-403
[34]   Distances in SierpiA"ski graphs and on the SierpiA"ski gasket [J].
Cristea, Ligia L. ;
Steinsky, Bertran .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :201-219
[35]   On the packing coloring of base-3 Sierpinski graphs and H-graphs [J].
Deng, Fei ;
Shao, Zehui ;
Vesel, Aleksander .
AEQUATIONES MATHEMATICAE, 2021, 95 (02) :329-341
[36]   {Pr}-free colorings of Sierpinski-like graphs [J].
Fu, Hong-Yong .
ARS COMBINATORIA, 2012, 105 :513-524
[37]   CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS [J].
Klavzar, Sandi ;
Zemljic, Sara Sabrina .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) :401-412
[38]   FEEDBACK VERTEX NUMBER OF SIERPINSKI-TYPE GRAPHS [J].
Yuan, Lili ;
Wu, Baoyindureng ;
Zhao, Biao .
CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2019, 14 (01) :130-149
[39]   The double Roman domination number of generalized Sierpinski graphs [J].
Anu, V ;
Lakshmanan, S. Aparna .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
[40]   Zeros of the Potts model partition function on Sierpinski graphs [J].
Chang, Shu-Chiuan ;
Shrock, Robert .
PHYSICS LETTERS A, 2013, 377 (09) :671-675