A 2-parametric generalization of Sierpinski gasket graphs

被引:0
作者
Jakovac, Marko [1 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
关键词
Sierpinski graphs; Sierpinski gasket graphs; Hamiltonicity; Chromatic number; HANOI GRAPHS; METRIC PROPERTIES; TOWER; NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graphs S[n,k] are introduced as the graphs obtained from the Sierpinski graphs S(n,k) by contracting edges that lie in no complete subgraph K-k. The family S[n,k] is a generalization of a previously studied class of Sierpinski gasket graphs S-n. Several properties of graphs S[n,k] are studied in particular, hamiltonicity and chromatic number.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
[21]   ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS [J].
Estrada-Moreno, Alejandro ;
Rodriguez-Bazan, Erick D. ;
Rodriguez-Velazquez, Juan A. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) :49-69
[22]   Intruder capture in sierpinski graphs [J].
Luccio, Flaminia L. .
FUN WITH ALGORITHMS, PROCEEDINGS, 2007, 4475 :249-261
[23]   Covering codes in Sierpinski graphs [J].
Beaudou, Laurent ;
Gravier, Sylvain ;
Klavzar, Sandi ;
Kovse, Matjaz ;
Mollard, Michel .
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (03)
[24]   Hamming dimension of a graph-The case of Sierpinski graphs [J].
Klavzar, Sandi ;
Peterin, Iztok ;
Zemljic, Sara Sabrina .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) :460-473
[25]   On the Sombor Index of Sierpinski and Mycielskian Graphs [J].
Chanda, Surabhi ;
Iyer, Radha R. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) :20-56
[26]   Uniform spanning trees on Sierpinski graphs [J].
Shinoda, Masato ;
Teufl, Elmar ;
Wagner, Stephan .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02) :737-780
[27]   Packing coloring of generalized Sierpinski graphs [J].
Korze, Danilo ;
Vesel, Aleksander .
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03)
[28]   On Some Metric Properties of the Sierpinski Graphs S(n, k) [J].
Parisse, Daniele .
ARS COMBINATORIA, 2009, 90 :145-160
[29]   Crossing numbers of Sierpinski-like graphs [J].
Klavzar, S ;
Mohar, B .
JOURNAL OF GRAPH THEORY, 2005, 50 (03) :186-198
[30]   Metric properties of Sierpinski-like graphs [J].
Luo, Chunmei ;
Zuo, Liancui .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 :124-136