Segmentation of Lateral Ventricles in Magnetic Resonance Images

被引:1
作者
Bouchet, A. [1 ,2 ]
Pastore, J. I. [1 ,2 ]
Brun, M. [1 ]
Ballarin, V. [1 ]
机构
[1] Univ Nacl Mar del Plata, Digital Image Proc Grp, Mar Del Plata, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Natl Council Sci & Tech Res, RA-1033 Buenos Aires, DF, Argentina
来源
VI LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2014) | 2014年 / 49卷
关键词
Mathematical Morphology; Compensatory Fuzzy Mathematical Morphology; Segmentation; Lateral Ventricles;
D O I
10.1007/978-3-319-13117-7_117
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetic Resonance Imaging is a powerful tool for the early diagnosis of different neurologic diseases. Given that this kind of images have high noise levels and imprecision in the definition of their structures, in this work we propose the use of Compensatory Fuzzy Mathematical Morphology to improve the segmentation of lateral ventricles, compared to Mathematical Morphology. To compare their performance we implement a classic Mathematical Morphology and a Compensatory Fuzzy Mathematical Morphology version of a segmentation algorithm. Once designed the algorithm, we evaluate the results obtained from the use of each methodology. Their performance is studied on a 160 images set, containing gold-standard images, provided by the FLENI institute, displaying a correct detection of 94.71% for Mathematical Morphology and 97.46% for Compensatory Fuzzy Mathematical Morphology.
引用
收藏
页码:457 / 460
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 1983, Image Analysis and Mathematical Morphology
[2]   FUZZY MATHEMATICAL MORPHOLOGIES - A COMPARATIVE-STUDY [J].
BLOCH, I ;
MAITRE, H .
PATTERN RECOGNITION, 1995, 28 (09) :1341-1387
[3]  
Bouchet A., 2011, COMPENSATORY LOGIC A, P226
[4]   ARITHMETIC MEAN BASED COMPENSATORY FUZZY LOGIC [J].
Bouchet, Agustina ;
Ignacio Pastore, Juan ;
Espin Andrade, Rafael ;
Brun, Marcel ;
Ballarin, Virginia .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2011, 10 (02) :231-243
[5]   THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS [J].
OTSU, N .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1979, 9 (01) :62-66
[6]  
Pastore J.I., 2012, 3 INT S INN TECHN IS
[7]  
Provost F., 1997, Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, P43
[8]  
Serra J., 1988, IMAGE ANAL MATH MORP