Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca2+ ([Ca2+](i)) and contractility. However, the effects of hyperoxia on this axis in the context of Ca2+/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca2+ responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O-2. Although 50% O-2 did not alter sGC alpha(1) or sGC beta(1) expression, BAY 60-2770 did increase sGC beta(1) expression. BAY 41-2272 and BAY 60-2770 blunted Ca2+ responses to histamine in cells exposed to 50% O-2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca2+ responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.